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Abstract: The use of 3D point clouds to improve the understanding of natural phenomena is cur-

rently applied in natural hazard investigations, including the quantification of rockfall activity. 

However, 3D point cloud treatment is typically accomplished using nondedicated (and not optimal) 

software. To fill this gap, we present an open-source, specific rockfall package in an object-oriented 

toolbox developed in the MATLAB® environment. The proposed package offers a complete and 

semiautomatic 3D solution that spans from extraction to identification and volume estimations of 

rockfall sources using state-of-the-art methods and newly implemented algorithms. To illustrate the 

capabilities of this package, we acquired a series of high-quality point clouds in a pilot study area 

referred to as the La Cornalle cliff (West Switzerland), obtained robust volume estimations at dif-

ferent volumetric scales, and derived rockfall magnitude–frequency distributions, which assisted in 

the assessment of rockfall activity and long-term erosion rates. An outcome of the case study shows 

the influence of the volume computation on the magnitude–frequency distribution and ensuing 

erosion process interpretation. 
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1. Introduction 

3D point clouds are commonly used in different scientific domains and in geosci-

ences. In geosciences, the use of point clouds mainly focuses on capturing outcrop geom-

etry [1], mapping geological layers [2], or investigating surface morphological changes 

[3,4]. In the topic of natural hazards, point clouds are frequently used for mapping land-

slides and monitoring topographic changes resulting from rockfall activity or mass move-

ment [5]. 

In natural hazards, point clouds originate from active sensors, such as laser scanners, 

also known as LiDAR technologies [6,7], or from passive sensors and workflows, such as 

classic photogrammetry or structure-from-motion (SFM) [8–11]. During the last decade, 

the popularization of point clouds acquired from ground-based LiDAR has allowed the 

rapid mass collection of slope surface measurements [12,13]. These high-accuracy and 

high-spatial-resolution data have opened new ways of investigating natural hazards [14–

17]. Working with multitemporal high-density point clouds (typically over 100 million 

points per scan) or large datasets requires a widely applicable and powerful program-

ming language. This has led to the development of open-source software dedicated to 

processing point clouds, most of which were originally dedicated to civil engineering or 

robotics, such as CloudCompare [18] or Point Cloud Library [19]. However, several chal-

lenges still exist in the management and extraction of this large amount of data collected 
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for natural hazard studies, in particular for detecting and estimating the volume of rock-

falls in their source areas. In addition, a key issue is how to gather all tools into a single 

structure, as has been done for aerial laser scanning in the domains of forestry and land 

use [20]. 

Extracting rockfall magnitudes, frequencies, and locations from high-resolution, 

multitemporal 3D point clouds has been an active research topic in recent decades. Exam-

ples include investigations of fragmental rockfalls in mountainous areas [16], investiga-

tions of coastal cliffs shaped by sea erosion [14,21–23], clustering of rockfall events [24–

27], and investigations of rockfalls along transportation corridors [28,29]. From a method-

ological point of view, most of the abovementioned studies use grid DEMs (in 2.5D) that 

have been interpolated from a point cloud parallel to the rock wall, which allows the ex-

traction of rockfall volumes by subtracting multitemporal or oblique DEMs [30,31]. How-

ever, this procedure does not facilitate computing complex shapes with “concave” faces. 

Some recent studies as in [32] investigated this problem. In this paper, we illustrate one 

possible method to semiautomatically compute the retrospective detection of rockfall 

sources and related complex geometries (i.e., concave hull volume) using a straightfor-

ward methodology. 

To detect retrospective rockfall sources, the compared point clouds need prealign-

ment or co-registration. The detection is performed using a point-to-surface comparison 

combined with a spatial filter. Then, to identify the true rockfall sources, a spatial cluster-

ing algorithm is used to segment points belonging to each rockfall source. Finally, we ap-

plied a shape reconstruction algorithm, used in the domain of computer graphics, to com-

pute complex rockfall source shapes and volumes, including concavities. This procedure 

is implemented in MATLAB with the landslide specific RockfallQuantification package, 

which is part of the free code toolbox 3DPointCloudToolBox, based on free code compo-

nents and well-established algorithms for point cloud data treatment. 

We attempted to demonstrate the efficiency of this method on the study area of the 

rock wall of the La Cornalle cliff. The obtained results allowed us to carry out a sensitivity 

analysis of the rockfall source volume computation on the erosion rate, and rockfall as-

sessment interpretation, using a magnitude–frequency plot and power-law regression as 

described in [22,31,33–37]. 

2. Toolbox for 3D Point Cloud Processing 

We create a point cloud toolbox, referred to as the 3DPointCloudToolBox, with em-

phasis on specific tools used for landslide and rockfall investigations (see Appendix A). 

This library uses object-oriented programming under the MATLAB® environment, which 

enables the management of large datasets and complex functions with increased speed 

[38]. This selection provides a suitable environment for any user to enhance the library of 

the toolbox owing to the work of the MathWorks® community. Some properties, such as 

position, color, or intensity, are obtained as direct information extracted from LiDAR de-

vices or photogrammetric models, whereas other properties, such as normal vectors, cur-

vature, etc., are computed in postprocessing when needed. Other included properties are 

related to the spatial distribution of the points, such as Delaunay triangulation or voxel 

structure, Kd-tree [39]. The presented toolbox can be downloaded under link at Supple-

mentary materials. 

3. Toolbox-Specific Landslide Package: Retrospective Rockfall Source Detection and 

Volume Estimation Processing 

3.1. Step 1: Rockfall Source Location Extract by Thresholding 

The first step consists of locating retrospective rockfall sources via classification into 

two different classes: 

1. Points belonging to topographic changes assumed to result from rockfalls. 

2. Points belonging to unchanged topography assumed to be stable surfaces. 
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The changes between two point cloud acquisitions are identified by a classical 

method described in [40]. The detection of rockfall sources uses the difference in distance 

between two point clouds of different epochs. The computation of the difference is per-

formed using a point-to-surface comparison to obtain the shortest distance (Euclidean dis-

tance) from each point to the surface as di = Δ(Pi, S), where (Pi) is, for example, a (i) point 

in the pre-rockfall event (pre) point cloud (P) of size (n), (S) is the surface built from the 

post-rockfall event (post) point cloud using the triangulation mesh, and (di) is the com-

puted signed distance along the local normal of (S). If no acquisition bias exists in the point 

cloud, the distribution of distance differences without surface change follows a normal 

distribution centered on zero. In the locations at which a change in topography occurs, 

the distance comparison (di) must be larger than the standard deviation (σ). According to 

[5], the standard deviation of the measurements between two epochs can be high and de-

pends on multiple factors, such as the quality of the point cloud datasets, the density of 

the points, the presence of vegetation, the roughness of the relief, and the quality of the 

alignment between the point clouds and/or the acquisition locations between the two 

epochs (LiDAR position or picture positions). According to [41], point cloud points are 

assumed to be indicative of topographic changes (i.e., here, a rockfall source) without am-

biguity when the point-to-surface comparison distances are larger than two times the 

standard deviation (2σ). As proposed by [41], this threshold can be improved by applying 

a spatial filter using the mean point-to-surface comparison distance of a point and its 25 

nearest neighbors. Thus, the thresholding conditions are defined as follows: 

�pre� ⊂ ��������� ������ when 
∑ ∆��pre� , �post���

���

25
 > +2�  

(1) 

�post� ⊂ ��������� ������ when 
∑ ∆��post� , �pre���

���

25
< −2� 

(2) 

The points representing the conditions in Equations (1) and (2) are merged for each 

neighborhood as one set of points belonging to a rockfall source. The result is spatially 

distributed points that form clusters corresponding to rockfall sources and isolated points 

associated with noise (Figure 1). 

 

Figure 1. Sketch of the process of localizing rockfall sources. Where P are the points, S is the reconstructed surface from 

point cloud at different epochs, and dP is the difference in distance from the point-to-surface comparison. The subscripts 

pre and post denote pre- and post-rockfall event acquisition, respectively. 
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3.2. Step 2: Clustering Rockfall Sources 

The second step consists of the identification of each cluster representing a single 

source and the removal of outliers. Currently, the segmentation of point clouds into clus-

ters uses the density-based clustering algorithm DBSCAN [42], as applied in [24]. The 

principle behind DBSCAN [42] consists of scanning a point cloud with a selected neigh-

boring radius (ε) assuming the availability of the minimum number of points (k) required 

to create a cluster. The choice of the minimum number of points (k) and the neighboring 

radius (ε) depends on the point cloud point density and the volume to be detected. This 

point is not intuitive and is a limitation of DBSCAN as it is necessary to first identify a 

reasonable measure of similarity for the dataset, before selecting the optimal (ε) It can be 

determined by a trial-and-error procedure. 

A solution to these shortcomings is to use the OPTICS algorithm (ordering points to 

identify the clustering structure) [43] as a variant of DBSCAN. When using the OPTICS 

algorithm, only the minimum number of points (k) considered as a cluster is needed. Then, 

the value of (ε) can be calculated from the chosen (k). Based on the reachability plot struc-

ture, an optimal neighborhood radius (ε) containing a predefined (k) points is given by 

[43] 

� = �
���[(1 2⁄ )� + 1]

�√��
 (3) 

where (n) is the number of points in the dataset, (m) is the dimensionality of the experi-

mental space, (Γ) is the gamma function, and (V) is the volume of the space formed by m 

points. The OPTICS algorithm sorts the data within a point cloud according to their dis-

tance and core distance and categorizes the points into one of three categories: core points, 

border points, or outliers (Figure 2). A point (i) of a point cloud is defined as follows: 

 A core point, if the neighborhood of radius (ε), has at least k-points (reachable points); 

 A border point possesses at least one core point within a radius (ε); 

 An outlier is a point with no point or no core point within its radius (ε). 

 

Figure 2. (A) Example of the raw dataset required to individualize the different clusters representing the different rockfall 

sources. (B) The OPTICS (ordering points to identify the clustering structure) density-based clustering algorithm allows 

classification according to the reachability distance or neighbor radius. (C) The classification allows attributing each point 

as a border or core point. Moreover, the OPTICS algorithm allows the identification of outlier points to remove. 

Now, if a point (i) is a core point, then it forms a cluster together with all points (core 

or border) that are reachable from it. They are mutually densely connected. Each cluster 

contains at least one core point. 
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According to [43], the OPTICS algorithm is a well-suited clustering method for da-

tasets with a large number of points. In addition, OPTICS was successfully used in chemo-

metrics to reveal clusters of arbitrary shapes with differing densities [44]. 

After processing, the point cloud is divided into a series of point cloud sets corre-

sponding to its clusters and outliers. Then, at the end of step 2, a cluster is considered a 

rockfall source when it is a compound of points from different epochs, pre- and post-

rockfall sources. The single epoch clusters and outliers are removed. 

3.3. Step 3: Rockfall Source Volume Estimation 

The last step consists of calculating the volumes of the different sets of clustered 

points identified as rockfall sources. The volume computation utilizes the full 3D point 

cloud using the α-shape hull algorithm [45,46] to take into account the natural geometric 

complexities encountered for rockfall source shapes. This algorithm, originally developed 

in the domain of computer graphics to recreate complex surfaces, is applied to geometrical 

studies in biosciences, [47], and its uses include visualization and volume estimations. The 

α shape is a mathematical expression used for the representation of complex shapes (con-

vex or concave) by the linear approximation of the original shape from a set of points [48]. 

According to [45], the α shape is the generalized form of the concave hull in which it is a 

complex of Delaunay triangulation (DT) in 2D or 3D. For a given value of α, the α-complex 

includes all the simplexes in the DT that have an empty circumscribing sphere with a 

squared radius equal to or smaller than α (Figure 3). 

 

Figure 3. Example of 2D projection of the α-shape hull construction concept. (A) Outer surface Delaunay triangulation 

(DT, convex shape) with all simplex triangles and circumscribing circles. (B) Gray triangles are defined by circumscribing 

circles with a radius larger than the defined research radius α. (C) New outer surface from the α shape with concavities 

formed by the points. The shape is an α-complex compound of multiple simplexes (triangles) from DT. 

To define the closeness to a real shape or the envelope (Sα) formed by a set of points, 

the value used is an α value corresponding to a research radius in the point cloud ranging 

from 0 to ∞ and follows the subsequent conditions: 

 If α = ∞, Sαis the convex hull of the point cloud; 

 If α = 0, Sαis each point of the point cloud itself; 

 If 0 < α < ∞, Sαwill be the largest polyhedron or shape connecting m points of the 

point cloud. 

In addition, we look for an efficient determination of the volume of this specific shape 

(Sα). As Sαis a complex of DT, we use the DT to decompose volumes defined by the enve-

lope of S� into tetrahedrons. The volume of a i tetrahedron with a triangular base of a 

given area, A, and a height, h, are given as follows: 

��  =  
1

3
�ℎ (4) 

The volume of the source of a rockfall is equal to the sum of all n tetrahedron vol-

umes, Vi, inside an α-shaped Sα defined as follows: 
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� �������� ������  = � ��

�

���

 (5) 

This process is applied to all rockfall sources. The precision of the volume calculation 

depends on the α value. It is possible to have an intuitive perception of the real volume 

by plotting the volume versus the α value, and the best α value is then located at the first 

asymptotic behavior instance (Figure 4). 

 

Figure 4. Example illustrating the way to find the optimal research radius that defines the α shape to compute the closer 

concave hull volume. The results are plotted on a research radius/volume chart. (A) Shows the print of a fossil ammonite. 

(B) Point cloud with a small research radius with inner connected tetrahedrons. (C) Shows the optimal research radius 

defined by the flexure of the curve. (D) Results with infinite radius leading to the convex hull. 

4. Case Study 

To illustrate the application of the abovementioned methodology and its implemen-

tation in MATLAB, we carried out a series of point cloud acquisitions with a terrestrial 

LiDAR device at a study site located a few kilometers eastward of Lausanne (Vaud, Swit-

zerland) in the Lavaux region (Figure 5A) within the Molasse Swiss Plateau [49]. The re-

gion is affected by several critical slow-moving landslides and numerous rockfall activi-

ties [50]. 
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Figure 5. (A)Map of the geological setting of western Switzerland. Red dots indicate the location of the study area in the 

Molasse Swiss Plateau near Lausanne. (B) La Cornalle cliff is the lateral scarp (green circle) of the slow-moving landslide 

indicated in yellow. (C) Overview of La Cornalle cliff on top of a slow-moving landslide. (D) A closer view of the cliff 

shows the lithology of the area composed of alternating metric layers of sandstone and marls. Source map from Swisstopo 

and orthophoto from Google Earth. 

The pilot study area, referred to as the La Cornalle cliff, is part of the lateral scarp of 

a slow-moving landslide (Figure 5B) that has been well documented since the 18th century 

and has been active for 10,000 years, resulting in several hazardous events [50]. The cliff, 

which is over 35 m high and 110 m long (Figure 5C), is an interesting actual-scale labora-

tory used to study rockfall processes, including the triggering conditions needed for the 

erosion of molassic rock, which leads to estimation of the erosion rate induced by rockfall 

activity. The cliff is hardly accessible for direct measurement. 

The La Cornalle cliff is composed of subhorizontal alternations of decimetric to met-

ric beds (0.1–3 m) of sandstone and marls (Figure 5D) of Chattian age from the Lower 

Freshwater Molasse [51]. Molassic rocks are generally weak rocks that are highly affected 

by erosional processes. The bedding is monocline and dips in the opposite direction of the 

slope. Four sets of discontinuities are present: stratification S0 125/14°, joint system J1 

234/86° subparallel to the cliff face, and joint systems J2 150/75° and J3 325/80° nearly per-

pendicular to the slope. Discontinuities are clearly present on sandstone beds. The spacing 

varies from 0.2 to 1.0 m for J1 and from 0.15 to 2 m for J2 and J3, respectively. 

The significant rockfall sources located in the sandstone beds are caused by the dif-

ferentiated erosion rate between marls and sandstone. This phenomenon induces the 

overhanging and toppling failure mechanisms of sandstone beds. Numerous rockfalls ac-

cumulate material on the top of the slow-moving landslide [52], which promotes move-

ment. Based on structural analysis, the expected block volumes could vary from 0.003 m3 

(0.1 × 0.2 × 0.15 m) for the minimal volume to 6.0 m3 (3.0 × 1.0 × 2.0 m) for the maximal 

volume. 

We acquired a first point cloud of the cliff from a ground-based LiDAR survey in 

June 2010. A second acquisition was completed in September 2012; afterward, the cliff was 
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monitored by LiDAR four times per year (seasonally) up to May 2015. The data were col-

lected with an Optech/Teledyne ILIRS 3DER with theoretical accuracy of 7 mm at 100 m 

and a standard deviation of 10 mm [53]. The footprint at the cliff range (~300 m) was ap-

proximately 50 mm. The effective point surface density was of 860 pts/m2. 

5. Results 

The results are illustrated to show some output from typical datasets from 3D point 

clouds. Table 1 reports the input parameters used in the illustrated results, which were 

obtained automatically by the algorithm and manually by the user. When available, the 

automatic parameters proposed by the software were applied. The user-defined parame-

ters were as follows: 

Table 1. Example of input parameters used for the La Cornalle cliff case study. 

Input Parameters 

Threshold for pre- to post-event (T) 

corresponding to 2σ 
0.074 m Automatically defined by package 

Minimum number of considered 

points for a cluster (k) 
34 pts Manually defined by user 

Neighborhood radius (ε) 0.251 m Automatically defined by package 

α value or research radius (α) 0.25–1.25 m Manually defined by user 

With a minimum of 34 points, it is expected to detect volumes larger than 0.5 liters 

according to the described point surface density. The α value was determined for each 

point rockfall source based on the procedure described in Section 3.3. 

As an example, Figure 6A shows the observed and identified major rockfall events 

from sandstone beds between September 2012 and March 2013 during which the northern 

part of the cliff experienced important rockfall activity. Thirty-one rockfall events were 

identified via photographic comparison, mostly the important volumes. Figure 6B shows 

the identified rockfall sources after computation using the developed toolbox and apply-

ing the presented methods on the LiDAR data collected between September 2012 and 

March 2013. Each rockfall source belongs to a different-colored point cloud. In total, 49 

individualized rockfall sources extracted with the presented procedure were identified. 

When comparing the two results, we noted that the difference in the identified number of 

rockfall events comes from the small undetected rockfall sources in the picture analysis. 

To illustrate the output results of the presented procedure, and particularly the com-

puted rockfall volumes, we used the classic rockfall magnitude–frequency representation 

[22,31,33–37]. According to [37], volumes from rockfall source areas are assumed to follow 

a power-law regression: 

� = ���� (6) 

where V is the rockfall volume, n is the number of rockfalls larger than V occurring in a 

rock wall during an investigation period, and the constant, a, represents the number of 

rockfalls whose volume is greater than 1 m3. It depends on the size of the cliff, the length 

of the investigation period, and the geological and geomorphological context. The expo-

nent, b, depends on the geological and geomorphological context only. Thereby, recent 

studies showed that a and b are correlated to the GSI (Geological Strength Index) of the 

rock cliff [37]. In addition, the value of b indicates the proportion of small events as com-

pared to larger events. Therefore, this is important in the context of a power-law distribu-

tion, where small events in sum could contribute significantly to overall volume loss. The 

power-law regression has some limits as described in [22], as we have potential temporal 

and/or spatial resolution bias. 
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Figure 6. (A) An example of the location of identified rockfalls (green) based on field observations and picture analysis 

between two epochs (Fall 2012–Spring 2013). (B) Identified points belonging to different rockfall sources after using the 

rockfall source extraction function on the acquired point cloud between Fall 2012 and Spring 2013 with a terrestrial laser 

scanner in the same area. The segmentation of different individualized rockfall sources plotted with a different color. 

We analyzed the sensitivity of the computed volume for a restrained series of identi-

fied rockfall source varying the α values for the whole series. We increased the α values 

by increment up to infinity, hence increasing the trend toward a convex shape. Figure 7 

shows the magnitude–frequency relationship of the series of computed volumes from the 

identified rockfall sources with different complex shapes, between Fall 2012 and Spring 

2013, illustrated in Figure 6B. Figure 7 outlines the influence of the α value on each series 

of computed volumes from rockfall sources using power-law regression on each magni-

tude–frequency distribution. The magnitude–frequency representation is used here to 

show the trend. The regressions are made from volumes ≥0.01 m3, which is the expected 

smallest volume identified without ambiguity from the point cloud. We observed an in-

crease in the number of volumes greater than 1 m3, or an increasing parameter a for an 

increase of the α value. In contrast, we observed a decrease in the b exponent. For values 

α < 0.1, which are a too low research radius, we observed that most of the reconstructed 

volumes are not filled or contained inner holes, as in Figure 4B. For a value 0.1 ≤ α ≤ 1.25, 

we can reconstruct volumes conserving a close-to-reality geometry depending on block 

shape complexity. For a value α > 1.25, we start connecting farther points, increasing shape 

convexity for all rockfall volumes, and moving away from real geometry up to an infinite 

α value, which indicates the maximal convex shape and the maximal rockfall volume (i.e., 

Figure 4D). 
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Figure 7. Magnitude–frequency plot shows the influence of the α value on the computed volumes from identified rockfall 

sources with different complex shapes between Fall 2012 and Spring 2013 as shown in Figure 6B. Power laws fitted on 

rockfall sources with volumes >0.01 m3 show different trends according to different α value (from 0.1 to ∞ as a convex 

shape). 

We applied the presented methodology to the overall monitoring period from 2010 

to 2015 data. Thus, we identified 394 rockfall sources. Based on observation made on Fig-

ure 7, we applied on each of these rockfall sources a detailed assessment of the volume in 

order to compute close-to-reality volume, applying the method illustrated in Section 3.3 

and Figure 4. As final result, we obtained a total volume of 105.2 m3, ranging from 0.0015 

to 7.63 m3 with a mean volume of 0.2 m3 (see Figure 8). Less than 1% of the rockfall sources 

were smaller than 0.003 m3 (0.1 × 0.2 × 0.15 m), which is the smallest volume expected from 

structural analysis. Less than 25% of the rockfall sources are smaller than 0.01 m3 (0.2 × 0.2 

× 0.2 m), which is the expected smallest volume identified without ambiguity from the 

point cloud. In Figure 8, the regression shown in red represents the rockfall sources with 

volumes higher than 0.01 m3, and the other regression shown in blue represents all vol-

umes, including the smallest volumes. Green triangles were not included in the regression 

analysis because they represent multiple rockfall sources and were too scarce during the 

period of monitoring; thus, they were not considered to be representative [22,54]. We ob-

served that the choice of the volume interval considered in the regression affects the a and 

b parameters. With distribution containing all rockfall sources, a increases and b decreases 

compare to distribution with only rockfall sources >0.01 m3. 
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Figure 8. Magnitude–frequency plot of the rockfall sources from the full survey period (2010–2015) using the optimal α 

value according to method described in Section 3.3 for each rockfall source. One power law is fitted on overall rockfall 

sources and a second on the rockfall sources with volume >0.01 m3. The green triangles were clearly identified as multiple 

rockfall sources and are not considered for the regression fit. 

6. Discussion 

From a processing and methodological standpoint, we note that applying the pre-

sented package for the detection and volume calculation of rockfall sources based on point 

clouds provides the benefit of being less time intensive compared to procedures that use 

manual methods and multiple software programs. This advantage is even more relevant 

when monitoring is performed on large outcrops based on several time series. The pre-

sented approach provides automatic thresholding, making it a robust method. Based on 

our experience, the presented results illustrate that segmentation permits efficient extrac-

tion of rockfall sources. However, some limitations appear in the point-to-surface method 

in terms of precision. Improvements could be made using finer point-to-surface compar-

isons in the first step by, for example, using the M3C2 algorithm comparison developed 

by [55] and investigated in [56]. The DBSCAN algorithm used in clustering datasets re-

quires a homogenously spaced point cloud since the minimum number of points and ε 

cannot then be chosen appropriately to detect all clusters at once. If the data and scale are 

not well analyzed before applying this method, the results can be biased. This limitation 

is eclipsed by the benefits of the OPTICS algorithm, as it offers an alternative to requiring 

an optimal ε, even if the user does not know the ε value. The advantages of using the 

OPTICS algorithm are as follows: (a) This algorithm does not require prior knowledge of 

the number of clusters in the data; (b) this variation of the DBSCAN algorithm enables the 

identification arbitrarily shaped clusters and clusters completely surrounded by other 

clusters; and (c) using OPTICS classification, we are able to remove outliers. However, the 

proposed algorithm also has some disadvantages, the OPTICS algorithm was not entirely 

deterministic; depending on the order in which the data are processed, border points were 

reachable from more than one cluster. This situation could occur if two or more rockfall 

sources were very close. 

For the volume computation, it is possible to say that using the α shape takes full 

advantage of the 3D surface (with overhanging, etc.) and does not reduce it to 2.5D [30]. 

We see that for shapes that were more complex, our estimates approach the real volume 

and avoid overestimation (see Figure 4D). The α shape can compute a very complex 

shape, as often observed in natural rockfall geometry related to a discontinuous layout. 
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The main problem with α shapes is the determination of the best α values for surface 

reconstruction when the point cloud does not present a uniform density of points [32]. 

Some studies have shown improvement of the surface and volume computation when 

using the α shape as was done in [57]. Furthermore, some issues with holes from shadow-

ing during acquisition were encountered, as was also observed by [25] with the potential 

to negatively impact the accuracy of the results. This indicates that acquiring the point 

cloud from multiple positions can help overcome these errors. 

Concerning the results from the case study, a good correlation can be seen between 

the rockfall sources identified during fieldwork (green in Figure 6A) and sources detected 

with our package (shown in Figure 6B). The segmentation of rockfall sources worked suf-

ficiently for the efficient identification of volumes at different scales, e.g., from 0.0025 to 

10 m3 with a point spacing at cliff range of 3.4 cm. 

When looking at the volume–frequency plot in Figure 7, we observed a decrease in b 

exponents, when increasing α value, which is in agreement with previous studies pointing 

out that the decrease in the value of b indicates a rise in the portion of larger events as 

compared to smaller events [33]. This is logically correlated to increasing α value, which 

generates a more convex and hence larger volume. Therefore, we observed variations in 

the volume ranging from 5% to 90% when computing concave or convex shapes depend-

ing on the selected α value and the complex geometry of the rockfall sources. The varia-

tion is particularly significant for large volumes with an increase trend for larger volumes. 

The structural analysis of the cliff showed four main joint sets that produced a parallele-

piped unitary rockfall geometry. Thus, we can expect that larger rockfall events are a com-

bination of several unitary parallelepipeds inducing a more complex geometry and 

thereby producing some concave geometries. In contrast, we also observed that volume 

computation influences a as computing less-complex geometries increases the overall vol-

ume size, which leads to an overestimation of volume size during the monitoring period. 

This highlights the importance of measuring the complexity of the geometry of large 

rock falls and the use of an α shape to obtain a volume and a magnitude–frequency anal-

ysis that are closer to reality. 

When looking at the volume–frequency plot in Figure 8 an underestimation of the 

number of rockfalls with small volumes (<0.05 m3) is suspected. The same observation is 

made on Figure 7. This may have been caused by the limited spatial resolution (one point 

every 3.4 cm), as described in [35], and the minimal number of points used for cluster 

detection (see Section 3.2). Some large rockfalls were related to multiple events located in 

the same area (i.e., triangle symbol in Figure 8) but computed as a single event due to 

insufficient temporal resolution [35] or too close sources. This presence of multiple unre-

solved events can be resolved with a higher-frequency data acquisition, such as monthly 

or permanent acquisition [22], instead of seasonal acquisition. Thus, errors linked to coa-

lescence and superposition of events can be reduced with enough temporal sampling [33]. 

The volume estimations provided the statistics of all volumes that provided infor-

mation about the erosional processes or cliff retreat [58]. Based on the volume–frequency 

plot, the estimated exponent value (b) was between 0.48 and 0.78, and the factors were 

similar to those found in the literature by [34] for seaside sandstone cliffs. This can be 

correlated locally high fracturation in some sandstone layers or the poor GSI of the rock 

cliff but suggests that the volume computation and the regression line boundaries also 

influenced the erosional process interpretation [37,59]. The power law shows some limits 

in this study site as we have temporal resolution bias and effect related to variation of 

thickness in sandstone layers in a too small area leading to a too large effect on sampling. 

Nevertheless, using the power law, it is possible to extrapolate to large volumes that were 

not reached during the period of monitoring [58,60,61]. The interpretation made on the 

rockfall activity from the presented results allowed us to state that, even though the fail-

ures were clearly episodic, the mean cliff retreat rate by rockfall was estimated to be ap-

proximately 10 mm/year for a surface of 2240 m2 in the zone of interest, assuming a mean 

detachment of material of ~25 m3 per year between October 2011 and October 2013 and of 
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~21 m3 per year over the full monitoring period from 2010 to 2015 on sandstone beds. In 

addition to these results, the erosional volume of marls was not considered in this study. 

7. Conclusions 

The proposed toolbox tries to fill an existing gap in the open-source tools available 

for the treatment of point clouds oriented toward the quantification of rockfall activity. 

This package is a compound of multiple state-of-the-art algorithms (DBSCAN, OPTICS, α 

shape) that are able to identify rockfall sources and their volumes by considering its com-

plex shapes. Perspectives for the RockfallQuantification packages include an additional 

tool for describing the shape of each rockfall event in terms of the principal axis, which 

could bring interesting inputs to rockfall propagation software that takes into account the 

shape of the blocks, such as RocFall [62] or Rockyfor3D [63]. 

The application of the RockfallQuantification package to the La Cornalle cliff demon-

strated a decrease in processing time and provided a robust procedure to quantify rockfall 

activity and determine erosion rate. We were able to compute volume with concavities 

observed in the field and to finally calculate the erosion rate and subsequent magnitude–

frequency distribution of the local Molassic cliff. In addition, the results highlighted the 

importance of correctly estimating the volume of rockfall events when magnitude–fre-

quency plots are used. 

The RockfallQuantification package as well as the 3DPointCloudToolBox can also be 

applied to other high-resolution surface data techniques, such as aerial laser scanning or 

photogrammetric techniques, including Structure-from-Motion. In addition, the Rock-

fallQuantification package can be used for other applications in geosciences to extract vol-

ume information from other natural events (e.g., lava flow, sediment transport, etc.). Fi-

nally, as a free-code package, it allows users to constantly improve the package for use in 

their specific needs. 
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Appendix A 

3DPointCloudToolBox contains general packages (Figure A1) with state-of-the-art 

algorithms and dedicated functions for point cloud preprocessing, including the align-

ment of point clouds PointCloudAlignment and PointCloudComparison for point cloud 

comparison (point-to-point and point-to-surface). The 3DPointCloudToolBox contains 
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specific postprocessing packages oriented toward rockfall analysis (RockfallQuantifica-

tion) presented in detail in subsequent sections. The elementary brick is the object class 

PointCloud created with a series of properties useful for data treatment, which includes 

the point’s position (X; Y; Z), intensities (I), colors (R; G; B), normal vectors (Nx; Ny; Nz), 

etc. 

The RockfallQuantification package contains a series of functions encapsulated in the 

main script (Figure A2). This inner structure allows either extracting intermediary results 

at each step or running the full package to obtain the volume for each rockfall event as 

output. 

Figure A2 describe all functions used in the RockfallQuantification package that en-

able the extraction, individualization, and computation of rockfall volumes. As input data, 

the package needs two point clouds acquired at different epochs. Other necessary input 

parameters include the minimum number of points (k) to be considered to create a cluster 

in step two (see Section 3.2) and the research radius (r) needed to compute the shape of 

the rockfall point cloud at step three (see Section 3.3). It is possible to define all automatic 

research parameters (such as σ and ε) to decrease processing time or affine the results. It 

defines the threshold to determine σ at step one (see Section 3.1) or the neighborhood 

radius (ε) for step two (see Section 3.2). This solution is easier if the user has an idea of the 

research radius parameter, but this will increase the computation time. To compute the 

point-to-plane comparison, RockfallDetect needs the PointCloudComparison package. 

The provided final output is a database with labeled rockfall event volumes and associ-

ated point cloud objects defined at the second stage. 

 

Figure A1. The structure of the 3DPointCloudToolBox contains folders labeled as Documents for 

tutorials, Examples of scripts to start up, Beta for functions in development, and Data to store raw 

data that can be used in the 3DPointCloudToolBox. The main folder Toolbox contains subfolders 

for point cloud data treatments (MainLibrary, PointCloudAlignment, PointCloudComparison, 

SyntheticPointCloud) and a specific subfolder landslide for landslide monitoring, with one for 

rockfall monitoring and another for landslide surface displacement monitoring (RockfallQuantifi-

cation, LandslideTracking). 
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Figure A2. Workflow for the RockfallQuantification package. 

Table A1. Functions available on the RockfallQuantification package. 

RockfallQuantification Functions 

Step 1: RockfallExtract Extract point belonging to surface change from two PointCloud objects 

Step 2: RockfallSegment Individualize single rockfall event by clustering index on PointCloud 

dbscan_optics 
Density-Based Spatial Clustering of Applications with Noise [42] and OPTICS improvement 

[43] 

dist Compute Euclidean distance between points in the cloud 

epsilon 
Compute optimal epsilon radius according to gamma function approximation (Daszykow-

ski et al., 2002) 

Step 3: RockfallVolume Compute volume and center of mass of PointCloud 

trueboundary Find boundary points to define shape of PointCloud 

volumes_tetra Compute volume of single tetrahedron 

alphavol Compute -concave hull from PointCloud [45] 

Table A2. Key terms of the MATLAB®-oriented programming as defined in MathWorks®. 

MATLAB Classes—Key Terms 

Class definition Description of what is common to every instance of a class 

Classes A class describes a set of objects with common characteristics 

Super classes Classes that are used as a basis for the creation of more specifically defined classes (i.e., subclasses) 

Subclasses 

Classes that are derived from other classes and that inherit the methods, properties, and events 

from those classes (subclasses facilitate the reuse of code defined in the superclass from which they 

are derived) 

Objects Specific instances of a class, which contain actual data values stored in the object’s properties 

Properties Data storage for class instances 

Methods 
Special functions that implement operations that are usually performed only on instances of the 

class 

Packages Folders that define a scope for a class and function naming 
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Table A3. PointCloud methods or functions implemented to operate on PointCloud objects only. 

PointCloud Methods 

Add Add the content of a given point cloud to this one 

addNoise 

Add simulated noise to the true point positions with following possibility: 

Gaussian position smearing 

Outliers to simulate completely wrong position 

Drop out some points by replacing points position by NaNs 

ComputeBoundaries Compute the Boundary points 

ComputeCurvature 

Compute the curvatures at each point using: 

Estimation of the curvature based on [64] 

Variation of the surface from correlation of point clouds based on [65] 

ComputeDelaunayTriangulation Compute a 3D Delaunay triangulation using built-in MATLAB® function 

ComputeKDTree Compute a Kd search tree using built-in MATLAB® function 

ComputeNormals Compute the least squares normal vector estimation of the points based on [64] 

ComputeOptimalNormals 
Compute the adaptive normals based on neighbor size, point density, and re-

search radius based on [66] in order to reduce normals dispersion 

ComputeTrueDistance 
Compute the mean and root mean squared distances between a PointCloud po-

sitions and a given PointCloud true positions 

CopyTrue2MeasPos Copy the “true” positions to the “measured” ones 

GetMissingPropFromPC 
Complete properties of an object PointCloud by getting the missing ones from 

other PointCloud object 

HasTrueP Return true if the object PointCloud has true positions 

ImportDataFromASCII Import data from an ASCII file 

IsEmpty Is the object PointCloud object empty? 

MeshPointCloud Create a MeshPointCloud from this PointCloud 

MoveToCM Move to the center of mass of another given object PointCloud 

NormalsOutTopo 

For each point, compute the sign of the normal vector to be oriented toward its 

indexed sensor using TLSAttribute to have normals orientation to be out of the 

topography 

Plot3 Plot the 3D coordinates of each point of the object PointCloud Positions 

PlotCurvature Plot the computed curvatures 

PlotNormals Plot the computed normals 

PlotPCLViewer 
Plot for large point cloud positions with colors or intensities using Point Cloud 

Library Viewer [19] 

PlotPositionsWithColors Plot the point cloud with the colors 

PlotPositionsWithIntensities Plot the point cloud with the intensities 

RemoveNans Remove any NaNs values in P and TrueP 

SaveInASCII Save object PointCloud in ASCII format 

SaveInPCD Save object PointCloud in PCD format for open Point Cloud Library [19] 

Size What is the dimension of the object PointCloud? 

Transform Transform the object PointCloud 

WhatColor Query: what is the RGB color of the closest point? 

WhatIntensity Query: what is the intensity of the closest point? 

Table A4. Functions available in the MainLibrary package. 

MainLibrary 

PointCloud Constructor of the object PointCloud and related methods 

AffinTransform Apply an affine transformation to object PointCloud 

AlphaBoundary Determine the convex hull of the object PointCloud using [45] 
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EuclDist Compute the Euclidean distance between two vectors of 3D points. 

HalfWayPoints Loop on all the possible pairs in the input points and compute the halfway point 

ImportPointCloudFromASCII 
Create a PointCloud object from a given input data (in ASCII format), allowing 

the user selection of the specific point cloud properties 

MeshPointCloud Class to hold mesh grids as created by functions like GridFit 

PlaneMesh Create a synthetic planar grid of points 

Plot3DPointClouds Display one object PointCloud with defined property 

PlotMultiPointClouds Display several objects PointCloud with defined property 

Quat2Rot Convert (unit) quaternion representations to (orthogonal) rotation matrices R 

RemoveDuplicate3DPoints Remove the duplicates in a set of 3D points 

Rot2Quat Converts (orthogonal) rotation matrices R to (unit) quaternion representations 

RotationMatrix Compute the rotation matrix given the Eulerian rotation angles 

SubSampling Create a sub sample of a given object PointCloud 

TransformMatrix 
Given the rotation angles and a translation vector, provides a transformation ma-

trix 

TriangularMesh Decompose a given triangle form mesh into smaller triangles 

Vector A class to efficiently store any other property or type of data 

Table A5. Functions available in the PointCloudComparison package. 

PointCloudComparison 

ComparePoint2Point 

Compute comparison using the shortest point to point distance. Calculation is made us-

ing Euclidean distance between a given point in PointCloud A to the closest point in 

PointCloud B with output as absolute differences. 

ComparePoint2Surface 

Compute comparison using the shortest point to surface distance. Calculation is made 

between a given point in PointCloud A and the distance parallel to the normal to the 

closest point in PointCloud B with output as signed differences. 
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