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Abstract
The paper reviews our recent attempts at modelling bed
load transport in mountain rivers. This is a longstanding
issue that has attracted considerable attention over the
last century. While a number of field and laboratory
studies have been instrumental in getting the big picture,
there is a clear lack of efficient methods for predicting
bed evolution and particle flux. Most approaches to bed
load transport have emphasized the existence of a one-
to-one relationship between the particle flux and water
discharge, but this result conflicts with the spread of
data, which often spans over several orders of magnitude.
A possible interpretation lies in the significance of the

fluctuations of the particle flux together with the propa-
gation of bed forms. We have therefore developed a the-
oretical model based on birth-death Markov processes to
describe the random exchanges between the stream and
bed, which then allows us to derive a governing equation
for the particle flux fluctuations. We end up with the
probability distribution function of the sediment trans-
port rate. A striking feature is the existence of large
fluctuations even under steady flow conditions.
Numerical simulations have been carried out to com-

pute the flow features, for the moment with no sediment
transport. These simulations have shown that the kine-
matic wave approximation (which leads to a significant
simplification of the Saint-Venant equation into a non-
linear advection equation) performs well for a wide range
of water discharges. Remarkably, it has been found that
under steady flow conditions, the local flow variables
(wetted section and water discharge, or flow depth and
mean velocity) exhibit a Froude similarity, i.e. regardless
of the water discharge, the Froude number remains fairly
constant at a given place of the river. Future work will
consider the inclusion of a stochastic sediment transport
equation in the Saint-Venant equations.

1 Introduction
The objective of this paper is to present an innovative ap-
proach to sediment transport. The work is done within
the framework of a joint project involving EPFL, a re-
search institute of the Wallis canton CREALP, and the
University of Jaén (Spain). This project aims to pro-
vide a better quantitative picture of sediment transport
in gravel-bed rivers, with a particular focus on mountain
rivers.
In spite of decades of research, sediment transport, in

particular in gravel-bed rivers, is still a difficult issue.
For instance, 1 shows the bed load transport rates mea-
sured in the Navisence River in Zinal from 2011 to 2013
(1-min averaged flux rates) and the empirical trend given
by Meunier’s bed load rating curve, which relates the bed
load transport rate Qs (in kg/s) to the water discharge

Qw (in m3/s) and bed slope i as follows: Qs = 9450i2Qw
[1]. More sophisticated equations lead to similar or larger
errors. At low flow rates, the deviation between the em-
pirical equation and measurements exceeds three orders
of magnitude and even at the highest transport rates (for
the 8 Aug. 2013 flood, the period of return was ∼ 50 yr),
there is a conspicuous deviation. This example shows
how poor our predictive capacity of bed load transport
rate is when empirical equations are used.

This shortcoming has been known for ages although
most textbooks on the topic barely mention the tremen-
dous uncertainty associated with bed load transport
equations (not to mention the systematic use of log-log
plots that minimize the perception of errors and devi-
ations). Each generation of scientists has tackled this
issue by arguing that more physics is needed to properly
address the problem at hand.

In the 1950s, Hans Einstein proposed a model of bed
load transport in which transport results from the dif-
ference between the entrainment and deposition rates,
E and D, respectively, which depend on the flow con-
ditions and bed geometry [2]. This amounts to writing
that on a small interval ∆x, the particle flux variation is
δqs = (E−D)∆x, and so the particle flux at bed equilib-
rium is the implicit solution to the equation E = D. The
originality of Einstein’s treatment lies in the introduc-
tion of probabilistic concepts to quantify the probability
of entrainment of one particle lying on the bed.

In the 1960s, Ralph Bagnold considered sediment
transport as the result of momentum transfers between
solid and liquid phases [3]. Bed load transport is essen-
tially a two-phase flow whose dynamics are controlled
by the momentum transfers between the water and solid
phases.

Needless to say that after decades of investigations,
the debate is still open. To advance our understanding
of sediment transport, we need to identify the blackspots
when building theories of sediment transport. In this
paper, we present some of the major difficulties in the
current developments. We also refer the reader to re-
cent review papers, which give an comprehensive sum-
mary of the state of the art regarding steep gravel-bed
rivers, e.g [4]. We then outline a theoretical approach
under construction, whose originality lies in its capac-
ity to calculate not only the mean particle flux, but also
its probability distribution. We do not claim that this
approach solves all of the problems. In fact, laboratory
experiments have just provided the proof of concept. Ap-
plications to the field require substantial adaptations of
the theoretical framework, which is too idealized to be
of practical interest (e.g., particles are spherical and of
identical size in the current version of the model). Yet,
this approach has the potential to elucidate a number of
issues arising in the study of bed load transport. The
last part of the paper concerns the numerical treatment
of the water flow. This is achieved within the framework
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Figure 1: Comparison between bed load transport rates measurements and Meunier’s equation for the Navisence
river (Zinal, VS). Here the local slope upstream of the station is i = 3.2%

of the Saint-Venant equations. Here we present the nu-
merical framework and results related to water flow (with
no sediment transport). The coupling between the water
stream and bed leads to a multitude of challenges that go
beyond the scope of this paper. These challenges include
the theoretical stochastic framework, which has to be
extended to deal with non-uniform flow conditions, and
the formulation and numerical resolution of a stochastic
Exner equation.

2 Scientific and Technical
Hurdles

This year marks the 100 years anniversary of the re-
port by Gilbert (1914), which is credited with the first
comprehensive experimental investigation into bed load
transport in inclined flumes [5]. Empirical equations
were proposed earlier than Gilbert. For instance, from
his observations of the Rhone River south to Tournon
(France) in 1879, the French civil engineer Paul du Boys
introduced a bed load transport equation from consider-
ation of the bottom shear stress on a granular bed [6]. An
analysis of the current literature on bed load transport
models shows that there has been no major breakthrough
between the earlier attempts by Gilbert or du Boys and
the models still used by scientists and engineers today.
This does not mean that the state of art is mature (and
thus progress is incremental), but on the opposite, there
are still many problems to sort out before a new gen-
eration of models can be proposed. In this section, we
review of the major obstacles to quantitative description
of bed load transport.

2.1 Definition of the Sediment Transport
Rate

Surprisingly, there is no unique way to define the sed-
iment transport rate. Randomness, intermittency, and
rapid changes in the transport rate measurements raise
the problem of a suitable procedure that enables calcu-
lation and description of sediment flux for both theoreti-
cal and practical purposes. In spite of valuable efforts in
recent years to gain insight into this issue, it is still un-
clear whether the different transport rate equations lead
to compatible results in terms of statistical properties
[7, 8].
An intuitive definition of the particle transport rate is

to regard it as the flux of particles through a cross-section

S of unit width:

qs =
∫
S

up · kdS, (1)

with up the particle velocity field and k the unit normal
to S. This definition is rarely used in practice as it is
more suited to continuous fields than discrete elements.
Therefore, different forms of the sediment transport rate
have been proposed. They all assume bed load transport
at equilibrium or near equilibrium. On average, they
may provide the same values, but the statistical prop-
erties of qs are influenced a great deal. Here are three
examples.

A variant of 1 is to count the number of particles that
pass through S over a short time increment δt. The
main problem is that qs is a step function, which takes
zero values except at the times of arrival of individual
particles; the resulting signal is then very noisy.

Another related form is to count the number of par-
ticles that arrive up to time t or to integrate qs over a
short period of time. In the laboratory, this is done by
weighting the material accumulated in a basket located
at the flume outlet while in the field, sediment traps and
bed load samplers are used. These techniques do not pro-
vide qs directly, but the sediment volume per unit width
V (t) =

∫
qs(t)dt. In principe, it should be possible to

differentiate V to derive qs, but in practice, fluctuations
in the V (t) records make this operation delicate, which
explains why sampling time is a key issue when trying
to properly evaluate the solid discharge.

The use of tracer stones in gravel-bed rivers has given
rise to a third relationship. From the observation that
particles can be moving, lying at rest on the bed surface,
or buried in the bed, one can define a virtual velocity,
which is the time-averaged velocity Up of a single particle
regardless of its state. Only the upper bed layer partici-
pates in bed load transport and is therefore termed the
active layer ; the thickness of this layer is La. It repre-
sents the depth down to which the bed is continuously
reworked by fill and scour. Mass conservation then im-
plies that

qs = UpLa. (2)
This equation has been used for natural rivers and flume
experiments. The statistical properties of qs(t) depend
on the fluctuations of Up and La, which are little known
in practice.

So what can we do? From a theoretical perspective,
more suitable definitions of the particle transport rate
can be borrowed from microstructural models used in
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the rheology of particle suspensions. Yet, these models
rely on ensemble averages, which lead to numerous diffi-
culties in the calculations or in practical applications. To
make the problem more tractable, we can substitute en-
semble averages with volume averages. This makes sense
when the entire flow is homogeneous, i.e., when the par-
ticles are homogeneously distributed in the streamwise
direction. For two-phase flows over mobile beds, bed
forms usually affect the distribution of moving particles,
which makes the assumption of homogeneity dubious.
One solution is to introduce a local particle transport
rate defined on a control volume (V = L × S) of length
L [9, 10]

q̄s = S

V

N∑
i=1

uivp = vp
L

N∑
i=1

ui, (3)

where vp is the particle volume (per unit width) and
ui = up · k denotes the streamwise velocity component
of particle i. Like the representative elementary volume
in microstructural theories, the control volume must be
sufficiently long to contain a number of particles, but
short enough compared to the scale of variation of q̄s on
the macroscopic scale.

The introduction of a finite-size volume in 3 leads to
additional problems: how can we distinguish fluctuations
that are intrinsic to the phenomenon and those that are
induced by the average process? To illustrate this is-
sue, let us consider that we would like to calculate the
solids fraction of an ordered packing of cylinders by tak-
ing the average over a control volume of length L. See
2. Volume-averaged solids fractions can be calculated as
a function of L. When L → 0, we get φ̄ → 1 while for
L → ∞, φ̄ → π/4. Although there is no randomness
in the particle arrangement, the volume-averaged solids
fraction exhibits fluctuations, whose amplitude decreases
with increasing L as 2πa/L. This clearly shows in that
case that the observed fluctuations of φ̄ are not intrinsic,
but depend on the control volume. For more complicated
situations, e.g. with random particle arrangements, it is
more complicated to untangle intrinsic and induced fluc-
tuations. The problem is made even more intricate owing
to other processes such as the propagation of bed forms,
whose typical length often matches that used for defining
the control volume.

2a

L

L

1

π/4

�

Figure 2: Calculation of the volume-averaged solids frac-
tion

2.2 Bed Structures
A major challenge in fluid mechanics is to understand
the origins and mechanisms that lead to the formation
of macroscopic structures in systems characterized by
apparent disorder. Waterways do not escape the rule.
They offer a wide range of bed morphologies exhibiting
regular patterns depending on the grain size distribution,

bed slope, water flow rate, etc. [11, 12]. Planform struc-
tures (e.g., bars and meanders) as well as bed forms (e.g,
ripples, dunes, steps and pools) have attracted consider-
able attention from geomorphologists and hydraulicians.
3 shows the upper reach of the Navisence River at Zi-
nal (Wallis, Switzerland), whose main channel can split
into two arms or more (braiding) and exhibits significant
sinuosity.

Figure 3: View of the upper reach of the Navisence River,
with the stream wandering through its alluvium. The
longitudinal profile is given in 11

A remarkable feature of bed structures is that they
emerge quite rapidly at fairly low discharge rates [13].
During intense floods, most bed structures are destroyed
and sediment transport occurs in the form of thick layers
of grains, a mode of transport called hyperconcentrated
flow [14]. In many practical situations, gravel beds ex-
hibit undulations, which evolve permanently. Bed struc-
tures are thus more the rule than the exception. This
is, however, poorly addressed in most laboratory exper-
iments used to derive bed load equations.

The mainstream view is that that bed structures arise
from a loss of stability of the bed due to the coupling
between the turbulent water stream, sediment trans-
port, and bed topography [15]. The main difficulty is
that depth-averaged equations such as the Saint-Venant-
Exner equations (see § 3.1) are linearly stable for Froude
numbers as large as 2. The calculation of bed form ini-
tiation and propagation then requires a more elaborate
framework [16].

An alternative approach to pattern formation high-
lights the part played by random fluctuations of the par-
ticle transport rate qs in the development of bed forms
[17]. Analogies can be drawn with many nonlinear phys-
ical systems, in which fluctuations can produce spatially
regular structures as a result of noise-induced transitions
between different states of the system [18]. In the ab-
sence of a more fundamental understanding of bed load
transport fluctuations, the simplest idea has been to
add a noise term to the governing equations. For in-
stance, Jerolmack and Mohrig showed that the growth
and steady-state dimensions of sand dunes can be suc-
cessfully captured using white noise in the Exner equa-
tion [19].

Regardless of the precise mechanism that rules their
dynamics, it is clear that bed structures markedly affect
the water flow, which in turn influences bed form initia-
tion and propagation. Field surveys, laboratory experi-
ments and numerical simulations have provided clear ev-
idence that flow resistance is controlled to a large extent
by bed forms [20]. For instance, in the absence of bed
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forms, there is a one-to-one smooth relationship between
the water discharge q and flow depth h, but when these
bed forms develop, this relationship exhibits a more com-
plicated pattern (non-uniqueness, hysteretic behaviour).
Bedforms are also often regarded as the main source of
particle flux fluctuations [21, 22, 23]: for instance, as bed
slope is locally quite different between the stoss and lee
sides of dunes, there is a significant change in the wa-
ter flow conditions (thus particle transport) and particle
entrainment.

2.3 Separation of Scales
The advent of modern science is tightly tied to the reduc-
tionist approach (i.e., any system can broken down into
individual elements, whose understanding helps us to get
to grips with the whole system) [24]. Part of the success
of this approach lies in the separation of length and time
scales for many problems. For instance, for monoatomic
gases, starting from the description of collisions at the
particle scale (kinetic theory), we can derive macroscopic
equations of conservation (Navier-Stokes equations) on
the macroscopic scale. In that case, the large differ-
ence between the atom size and the typical length scale
of continuum mechanics makes it possible to treat each
problem separately. The linkage between the micro- and
macro-descriptions is ensured through averaging. This
procedure works at coarser scales (typical examples in
computational fluid mechanics include large eddy simu-
lations, in which averaging is replaced by low-pass filter-
ing).
A hierarchical decomposition of the fluvial system into

nested components (from watershed to particle) has been
proposed [11], but a striking detail of the decompo-
sition is the overlap of scales and the varying nature
of the elements involved: while for Newtonian fluids,
there is a clear separation between the molecular scale,
Kolmogorov’ microscales of turbulence, and flow length
scale, it is no longer the case for instance, between bed
components such as boulders and the flow depth (moun-
tain streams are mostly characterized by low submer-
gence, i.e. the flow depth is just a few times larger than
the typical bed roughness). 4 shows the Navisence River
upstream of the measurement station: the typical flow
depth is 50 cm while the mean diameter is d50 = 10
cm. Note also the presence of vegetation, which plays a
role often overlooked, e.g., jamming wood debris during
floods [25] and consolidating effects of root systems on
the long run [26].

Figure 4: View of the Navisence River near the measure-
ment station of Zinal

2.4 Particular Realization Vs. Mean
Trend

Field surveys have shown that the sediment transport
rate seems to closely follow the time variations in the
water discharge. 5 shows a typical example of evolu-
tion for the Navisence River. In this mountain stream,
sediment transport is highly intermittent: it occurs pri-
marily in spring and summer as a result of snowmelt,
glacier runoff, and rainstorms, and tapers off during the
cold season. Yet, as shown by 4, there is no one-to-one
relationship between the water discharge and sediment
transport rate: for a given water discharge, the sediment
flux spans often over two to three orders of magnitude,
which shows that under similar flow conditions, the ac-
tual sediment flux can be quite different from the mean
trend. This spread of data has significant implications.
First, most theoretical models are only concerned with
mean fluxes and so, it is extremely difficult to test models
against field and laboratory data when these data span
over several orders of magnitude. Then, in many prac-
tical applications, focus is on different variables related
to sediment transport. For instance, for calculating the
time associated with reservoir filling, one is interested in
determining the volume of sediment as a function of time.
Owing to the random variation of the sediment flux, this
volume is a stochastic integral. The actual value of the
sediment volume at a given time is also quite different
from the mean trend V (t) =

∫
Qsdt. Strikingly, most—

if not all—models developed so far ignore this problem
of bed load transport variability whereas it should be at
the heart of the concerns.

3 Outline of the Theoretical
Framework

Here we outline the model under development. In the
construction of this model we have tried to tackle the
different issues presented in § 2. To date, we have essen-
tially focused on the determination of the particle trans-
port rate. The water phase is assumed to be properly
described using the Saint-Venant equations (see § 3.1).
The coupling between bed load transport and water
flow is achieved primarily through the Exner equation,
which expresses the conservation of mass for the bed.
This framework implies that turbulence is roughly de-
scribed by simple scalar relationships (e.g., the Manning-
Strickler equation for flow resistance). As turbulence is
key in the entrainment of particles from the bed and their
subsequent motion, averaged equations such as the Saint-
Venant equations may be too crude to capture the flow
dynamics in all its various aspects, but in a first stab at
modelling sediment transport, we assume that they are
sufficient to provide the main features of the water flow.
More attention is paid to the Exner equation, which is
useful not only to compute the mean particle flux (or
more precisely, the gradient of the particle flux), but also
particle exchanges between the bed and stream. To that
end, we take inspiration from other approaches taken in
kinetic chemistry or population dynamics, which lead to
evolution equations for the chemical components or the
species (see § 3.2). For the particle velocity fluctuations,
we use a simple analogy with Brownian motion of parti-
cles in a potential to derive the probability distribution
function of the particle velocity. We eventually end up
with the probability distribution of the particle transport
rate.
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Figure 5: Time series showing the water discharge and the sediment transport rate from May 2011 to Dec. 2012 in
the Navisence River, Zinal

3.1 Saint-Venant-Exner Equations
For one-space variable problems, the simplest morphody-
namic model comprises the shallow-water (Saint-Venant)
equations for the conservation of mass and momentum
of the water phase and the Exner equation for the con-
tinuity equation of the bed [27]:

∂h

∂t
+ ∂hv̄

∂x
= 0, (4)

∂hv̄

∂t
+ ∂hv̄2

∂x
+ gh cos θ∂h

∂x
= gh sin θ − τb

%
, (5)

(1− ζb)
∂yb
∂t

= −∂q̄s
∂x

= D − E, (6)

in which h(x, t) = ys−yb denotes the flow depth, yb(x, t)
and ys(x, t) the positions of the bed and free surfaces, v̄
the depth-averaged velocity, x the downstream position,
t time, % the water density, τb is the bottom shear stress,
ζb the bed porosity, q̄s the average bed load transport
rate, and D and E represent the deposition and entrain-
ment rates, respectively. The bed slope is defined as
tan θ = −∂xyb. In most models based on 4–6, the gov-
erning equations are closed by empirical relationships for
the flow resistance τb and sediment transport rate q̄s,
both being functions of the flow variables v̄ and h, and
additional parameters (e.g., bed roughness and slope).
Whereas the Saint-Venant equations are classical and

their physics is seldom called into question, the cou-
pling with the Exner equation leads to numerous diffi-
culties both physically and mathematically [28, 29]. Sev-
eral derivations of the Exner equation have been pro-
posed for different situations including variations in sed-
iment properties or changes in the boundary conditions
(e.g, tectonic uplift for landscape dynamics problems)
[30, 19, 7, 31, 8]. A central theme in all of these deriva-
tions is that the Exner model is an averaged equation
that specifies the rate of buildup/erosion of the bed sur-
face as a function of the sediment flux through the sur-
faces defining the control volume over which the aver-
aging has been done. The average sediment transport
rate has nontrivial effects on the flow dynamics owing to
the strong nonlinearities and coupling in the governing
equations 4–6. Indeed, the sediment flux affects the bed

surface yb(x, t) (thus its slope angle θ) through the Exner
equation 6, and it may also influence flow resistance de-
pending on the empirical parametrization chosen for the
bottom shear stress τb [32].

Our guess is that, if fluctuations are relevant to the
macroscopic description of bed load transport, then the
mean-field Exner equation 6 cannot properly account for
the bed evolution or particle flux, or at least, as is the
case for algebraic closure equations used in turbulence,
this equation is a gross approximation of reality. To clar-
ify this point, we need to take a closer look at the micro-
dynamics of the bed evolution as a result of entrainment
and deposition of particles.

3.2 Evolution of the Number of Moving
Particle

The idea is to count the number of moving particles in
a control volume or in an array of adjacent volumes of
length ∆x. In each elementary volume, the number of
moving particles varies with time as a result of transport
and exchanges with the bed (see 6). We do not discrim-
inate between rolling and saltation and treat both mo-
tions as a single species which we call the moving parti-
cles. A convenient framework for the investigation of the
statistics of these exchanges is the theory of birth-death
Markov processes, widely used in population-dynamics
models or chemical kinetics [33].

As for any idealized formulation, a tradeoff between
physical scope and mathematical tractability has had to
be found. To achieve analytical results, we introduce a
number of simplifications:

• The sediment comprises spherical particles of equal
diameter d and density %p.

• We consider a two-dimensional steady water stream
flowing down a sloping bed composed of particles
identical to those transported. The bed breadth B
is assumed to be indefinitely large.

• The water flow is characterized by its depth-
averaged velocity v̄(x, t) and flow depth h(x, t),
which are assumed to be prescribed and indepen-
dent of the sediment transport. The water flow is
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Figure 6: Sketch showing the processes considered for
calculating the evolution of the number N of moving
particles M within an observation window of length ∆x.
This number can be increased when particles enter the
volume or are entrained as a result of individual and col-
lective entrainments from the bed B (with a respective
rate λ′ and µ); N decreases when particles leave the vol-
ume or are deposited (with a rate σ)

turbulent, but the details of the turbulence and ve-
locity field are ignored. Turbulence dissipation and
flow resistance due to the particles are entirely en-
coded in the τb(v̄, h) expression, which will not be
studied here.

• The concentration of moving particles is small and
so particle interactions may be neglected. In terms
of the bed load transport regime, this also means
that the bed shear stress narrowly exceeds the
threshold for incipient sediment motion.

• The water stream drives the sediment phase: the
particle phase is subordinate to the water phase in
that the mean particle velocity ūs is controlled by
the water flow conditions, but due to particle ex-
changes (entrainment/deposition) between the bed
and stream as well as particle velocity fluctuations,
the instantaneous particle flux qs undergoes varia-
tions of different magnitudes.

• The bed is initially flat and here we do not consider
the development of bed forms, even though after a
finite time such bed forms are likely to develop and
affect water flow and sediment transport.

• We assume that the number of particles making up
the bed is infinite, i.e., whenever a particle at the
bed interface is set in motion, the shape of the in-
terface is altered, but not the number of particles
available to entrainment at the bed interface.

• As we study steady uniform flows over flat beds (free
of patterns), we do not address the dependence of
the model coefficients on the Shields stress or any
other parameterization of the flow conditions. These
coefficients (e.g., entrainment and deposition rate
coefficient) are thus constant in the following devel-
opments. Note that the final structure of the gov-
erning equations will not be affected by this assump-
tion.

If there are N moving particles within the control win-
dow, the probability of deposition within the time incre-
ment δt is σNδt, with σ the deposition rate. For entrain-
ment, we assume that there are two processes referred
to as individual and collective entrainment resulting in
a probability of entrainment P = (λ′ + µN)δt, where
λ′ and µ denote the individual and collective entrain-
ment rates, respectively. Collective entrainment acts as

a feedback loop: as will be shown later, µ is a key pa-
rameter, which controls the development and strength of
wide fluctuations. A caveat is in order: here, collective
entrainment implies that the probability of entrainment
depends not only on the flow conditions (through λ′),
but also on the number of moving particles (through µ)
as these can impact the bed and impart momentum to
the bed particles, favouring their entrainment. In con-
trast with the physics of phase transition, it does not
involve the existence of long-range correlations. It does
not mean that there are massive departures of particles
(avalanches) within short time spans. For subsequent
use, we also introduce a volumetric particle entrainment
rate per unit length λ = λ′$p/∆x and the differential
rate κ = σ−µ between deposition and collective entrain-
ment.

The evolution of the number of moving particles could
be described using the following forward master equa-
tion:

∂

∂t
Pn(n, t) = (n+ 1)σPn(n+ 1, t) (7)

+ (λ′ + (n− 1)µ)Pn(n− 1, t)
− (λ′ + n(σ + µ))Pn(n, t).

Steady-state solutions to this equation can be obtained
using the probability generating function. A stumbling
block in this approach is that the governing equation
for N involves discrete probabilities. To generalize the
model and derive a continuum formulation, we wish to
replace the discrete variable N with a continuous vari-
able. A classical strategy is to introduce the density num-
ber c = N/∆x. The governing equation for the density
number can be obtained from 7 by using the Kramers-
Moyal or system-size expansion. This technique was used
in a former paper [7]. The problem is that the resulting
governing equation involves an infinite series of terms.
Even if the objective is to find an approximation of the
probability distribution, the number of terms required in
the truncated series increases significantly when ∆x→ 0,
which makes the analytical approximation of little inter-
est.

Exact solutions can be determined by using the equiv-
alent of a Fourier transform, called the Poisson represen-
tation [34]

P (n, t) =
∫
C

e−aan

n! f(a, t)da, (8)

where integration is made over a certain domain C and
f(a, t) is a positive real-valued function. Fourier trans-
forms are reversible operations that map the time and
frequency domains in spectral theory of signals. On
many occasions when working with times series, it is
easier to work in the frequency domain than the original
time domain. Similarly here, the Poisson transform can
be introduced to map the discrete and continuous proba-
bility domains. Using this transform, we have shown that
the master equation 7 can be transformed into a second-
order nonlinear parabolic diffusion equation, which has
the same structure as that of a Fokker-Planck equation

∂f

∂t
= µ

∂2af

∂a2 −
∂

∂a
[(λ′ − a(σ − µ))f ], (9)

with f(a) the transform of P in the a-space. This equa-
tion also arises in economics to model short-term interest
rates [35].

The decisive advantage of this formulation is that we
can readily obtain exact solutions in the a-space for
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steady-state or time-dependent flow conditions. Further
information such as the autocorrelation function and mo-
ments can also be derived straightforwardly. Algorithms
simulating the process are also available to study time-
dependent flow problems [36].
This formulation has, however, disadvantages: while

analytical calculations are easier in the a-space, it is dif-
ficult to return to the physical variables. As a conse-
quence, if we are able to compute the probability den-
sity function f in the a-space or to provide its governing
equation, the back-transformation is uneasy. It is possi-
ble to relate the moments of f andN , but hardly possible
to provide more information on the stochastic variation
of N , which hinders, for the moment, the development
of a stochastic Exner equation.
Under steady state conditions and in the absence of

bed forms, it is possible to calculate the probability of
finding n moving particles within the control volume.
When the collective entrainment µ is nonzero, the solu-
tion to 7 is the negative binomial distribution

Ps(n) = NegBin(n; rnb, p) = Γ(r + n)
Γ(rnb)n! p

rnb(1−p)n, (10)

with rnb = λ′/µ and p = 1 − µ/σ, and where Γ denotes
the gamma function. The mean is

〈N〉 = λ′

σ − µ
, (11)

and the variance is

varN = λ′σ

(σ − µ)2 . (12)

For µ = 0, we obtain the Poisson distribution of rate
rp = λ′/σ,

Ps(n) = (rp)n

n! e−rp , n = 0, 1, . . . . (13)

3.3 Velocity Fluctuations
Many models have been proposed to compute the mean
particle velocity, but the probability distribution of the
velocity for a single particle has not been well investi-
tive until very recently [37, 38, 39, 40]. We have devel-
oped a very simple model, in which, making the analogy
with Brownian particles in a potential, we end up with
the probability distribution in the form of a truncated
Gaussian distribution:

P equ (u) =
√

2tr
πDu

F (u), (14)

with

F (u) =
exp

(
− tr(u− ūs)

2

2Du

)
1 + erf(ūs

√
tr/
√

2Du)
(15)

where tr is a relaxation time, Du is the equivalent of a
particle diffusivity, and ūs is the mean particle velocity
imposed by the water stream, i.e. the asymptotic value
to which the particle velocity tends at long times in the
absence of fluctuations.
We tested 14 against experimental data. The detail

can be found in an earlier paper [10]. The bed was
composed of gravel characterized by a narrow size dis-
tribution around a mean diameter 8 mm. The particle
density was 2650 kg m−3. Particle motion was tracked
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Figure 7: Probability distribution for the particle ve-
locity. The histogram represents the empirical proba-
bility density function of up. The thick black solid line
is the theoretical distribution 14 with ūs = 29.9 cm s−1

and ζ = 5.7. The thin red line shows the exponential
probability distribution Pu(u) = e−u/ūs/ūs, still with
ūs = 29.9 cm s−1. The dimensionless parameter ζ is de-
fined as ζ = ūs/

√
Du/tr

using a high-speed camera over a 40 cm length. 7 shows
the probability density function of the particle veloc-
ity up computed from 755 trajectories. The flow condi-
tions were the following: depth-averaged velocity of wa-
ter v̄ = 92.5 cm s−1, mean flow depth h = 2 cm, Froude
number Fr = 2.1, flow Reynolds number Re = 18× 103,
Shields number Sh = %h sin θ/[(%p − %)d] = 0.042. For
these flow conditions, long wavelength bed forms devel-
oped.

There is a fairly good agreement between these data
and the truncated Gaussian distribution 14. This result
compares well with the observations made by Martin et
al. [38] with similar flow conditions. Our results contrast
with those obtained by Fan et al. [40], Robeseberry et
al. [41], and Lajeunesse et al. [37], who found that the
empirical probability distribution of particle velocity up
was well captured by an exponential distribution. This
discrepancy may originate from the differences in the ex-
perimental set-up.

Although there is experimental evidence for the the-
oretical velocity distribution 14, the diversity of exper-
imental data shows that its range of application is un-
likely to cover all sediment sizes. We note, however, that
in either case, the truncated Gaussian and exponential
laws are thin-tailed, a result that can be anticipated as it
is uncommon for the highest particle velocities to exceed
fluid velocities. Therefore, the high fluctuations of sed-
iment transport rates are unlikely to stem from a thick
tail of the velocity distribution.

3.4 Particle Flux Fluctuations
As a matter of convenience, we express the instantaneous
particle flux as the number of moving particles per unit
time within the control volume rather than their volume

ṅ(t;V) = 1
∆x

N(t)∑
i=1

Up,i, (16)

where both N and Up,i are random variables. For a sta-
tionary process, their probability distributions are given
by 10—or 13 if µ = 0—and 14, respectively. The prob-
ability density function of the sum of random variables
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Figure 8: Shape of the probability density function Pṅ(ṅ)
given by 17 in a log-linear plot for different values of ζ
(the arrow shows increasing ζ values): ζ = 0.5 (black
solid line), ζ = 1 (black dotted line), ζ = 2 (purple solid
line), ζ = 3 (blue dotted line), ζ = 4 (blue dashed line),
and ζ = 5 (red solid line). All of the other parameters are
kept constant: ∆x = 1 m, ūs = 1 ms−1, r = 1 (λ′ = µ)
and p = 0.5 (σ = 2λ′). The mean particle flux 〈ṅ〉 is
1.541, 1.115, 1.007, 1.000, 1.000, 1.000 beads s−1 when
ζ is increased from 0.5 to 5. The square coefficient of
variation var ṅ/〈ṅ〉2 is 2.410, 2.362, 2.209, 2.109, 2.062,
and 2.040 beads2 s−2 when ζ is increased from 0.5 to 5

drawn from the same distribution can be calculated by
taking the Fourier transform of the convolution product,
then inverting the result. After a little bit of work, we
eventually find that

Pṅ(ṅ) = Ps(0)δ(ṅ) + ζ∆x
ūs

√
2
π

∞∑
k=1

Ps(k)G(ṅ), (17)

with

G(ṅ) =
exp

[
−ζ2 (ṅ∆x− kūs)2

2kū2
s

]
√
k(1 + erf(

√
kζ/
√

2))
(18)

where Ps(k) is given by 10 if µ > 0 and 13 if µ =
0. We have also introduced the dimensionless number
ūs/
√
Du/tr. The probability density function of ṅ is

discontinuous at ṅ = 0: there is a finite probability
Ps(0) = (1 − µ/σ)λ′/µ for µ > 0 (Ps(0) = exp(−λ′/σ)
for µ = 0) that there is no moving particle within the
window, in other words, that the particle flux is zero
(intermittent sediment transport).
Some remarkable features can be deduced from nu-

merical evaluations of 17. 8 shows examples of varia-
tions of Pṅ(ṅ) for ζ ranging from 0.5 to 5. For low ζ
values, the probability density function varies smoothly
and slowly except for the point of discontinuity ṅ = 0, as
explained above. Increasing ζ leads to (i) a faster (but
still exponential-like) decay at larger values of ṅ, which
is little influenced by the actual value of ζ, and (ii) the
development of sharp peaks of probability for the lowest
values of ṅ: in a dilute flow much of the flux is carried
by a couple of particles and, in the absence of velocity
fluctuations, the particle flux exhibits this bumpy land-
scape in which each peak corresponds to the crossing of
one particle.
Although Einstein used probabilistic concepts to de-

rive his bed load equation, he did not end up with a
probability distribution for the sediment transport rate.
His arguments lead to a binomial variation of the num-
ber of moving particles, thus a Poisson distribution in

the limit p → 0 (i.e. µ → σ) and N � 1 [2]. This
means that intense sediment transport exhibits bounded
Poissonian fluctuations, with the coefficient of variation
var1/2 qs/〈qs〉 = r

−1/2
p given by the steady-state Poisson

distribution 13. Hamamori is credited with the first at-
tempt to derive the probability distribution for the sedi-
ment transport rate. He considered that bed load trans-
port rate fluctuations arise from the migration of bed
forms [42]. He obtained a nonparametric density distri-
bution function of the bed load transport rate

P (qs) = 1
4〈qs〉

log
(

4 〈qs〉
qs

)
, (19)

which implies that the fluctuations are bounded: 0 <
qs < 4〈qs〉, and that the square coefficient of variation
is constant: var qs/〈qs〉2 = 7/9. More recently, Turowski
used a two-parameter distribution derived from the nor-
mal distribution, called the Birnbaum-Saunders distri-
bution

P (qs) = qs + α

2βqs
√

2παqs
exp

[
− (qs − α)2

2αβ2qs

]
, (20)

with α and β two calibration parameters [43]. The mean
value is 〈qs〉 = α(1+β2/2) and the coefficient of variation
is found to range from 0 to

√
5. 9 shows the comparison

of the probability distributions 17, 19, 20 for a particular
case. As the fluctuations are bounded, Hamamori’s rela-
tion is unable to capture the exponential tail of the distri-
bution and tends to overestimate the bed load transport
rate significantly (compared with what 17 predicts) in
the limit of ṅ → 0. This latter shortcoming is also ob-
served for the Birnbaum-Saunders distribution, but the
tail behaviour is consistent with that predicted by our
model 17. On the whole, the general impression one
gets from 8 is that the Birnbaum-Saunders distribution
smooths out the ups and downs in the probability dis-
tribution 17. Although the point of this paper is not to
discuss the agreement with field and experimental data,
note that that high-resolution data confirm (i) the signif-
icant proportion of zero values of the particle flux and (ii)
the highly fluctuating nature of time series, two features
that are consistently described by 17 and 9 [9, 44, 45].

Comparison with experimental data usually shows a
decent agreement between theory and experiment. Sys-
tematic comparison was done with an idealized setup, in
which sediment was replaced by 6-mm glass beads free
to move in a narrow flume [9]. 10 shows the empirical
and theoretical probability density functions Pṅ(ṅ) for a
slope of 5◦. One possible reason for the discrepancy be-
tween theory and experiment is the existence of two pop-
ulations of moving particles with two distinctive mean
velocities. Indeed, there is a size factor of about 5 be-
tween the velocities in the rolling and saltating regimes.
Comparing the different runs also shows that the larger
the number of moving particles, the better the agree-
ment. This may be an indication either that theory per-
forms less well in the limit N → 0 or the calculation of
the sediment transport rate is biased as we assumed that
the probabilities Pn(n) and Pu(up) were independent in
order to obtain Pṅ(ṅ) by taking the Fourier transform of
the convolution product. This requires further work. A
more thorough experimental investigation is still needed
to test the model.

3.5 Local and Macroscopic Forms of the
Exner Equation

The last building block is to make a link between the
Exner equation 6 and the local conservation of mass.
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Figure 9: Comparison of the probability density function
P (ṅ) in a log-linear plot: Hamamori’s equation 19 (with
〈ṅ〉 = 1 bead s−1) and Birnbaum-Saunders distribution
20 (with α = 0.451 and β = 1.556). We also report the
probability density function Pṅ(ṅ) for ζ = 5 (∆x = 1
m, ūs = 1 ms−1): when the number of moving particles
follows the negative binomial distribution 10 (solid red
line) with r = 1 (λ′ = µ) and p = 0.5 (σ = 2λ′) or the
Poisson distribution 13 (dashed red line) with rp = 1
bead s−1. Except for the Poisson distribution (whose
variance equals the mean), the coefficient of variation
is
√

2 and all of the distributions have the same mean
(〈ṅ〉 = 1 bead s−1)

By integrating the velocity probability equation, we ob-
tain an equation for the particle concentration or, equiv-
alently, the particle activity (the volume of particles per
unit bed length) γ(x, t) = N$p/∆x

∂

∂t
〈γ(x, t)〉 + ∂

∂x
(ūs〈γ(x, t)〉) = (21)

∂2

∂x2 (Du〈γ(x, t)〉) + λ− κ〈γ(x, t)〉,

with κ = σ − µ and λ = λ′$p/∆x. This is a linear
advection diffusion equation with a source term. Albeit
of very common structure, this equation yields many in-
teresting insights into the physics of sediment transport.
Note that 21 can also be cast in the following form

∂

∂x
Q(x, t) = E(x, t)−D(x, t)− ∂

∂t
〈γ〉, (22)

with Q = ūs〈γ〉 − ∂x(Du〈γ〉), E = λ + µ〈γ〉, and
D = σ〈γ〉. Interestingly, if we borrow the definition
of the sediment flux rate from David Furbish [31] and
refer to Q as the macroscopic sediment transport rate,
then 22 is the generalized Exner equation established by
a number of authors [46, 47, 30]. Note that the standard
equation 6 does not usually include the time variation
in the particle activity ∂t〈γ〉 as this term is vanishingly
small. Indeed, using dimensional analysis, [48] showed
that provided that the ratio ε = q̄s/qw (with qw the wa-
ter discharge) remains small, the time variation ∂t〈γ〉 is
second order. Thus to leading order, the bed evolution
∂tyb is controlled by the gradient ∂xq̄s.
The existence of diffusive effects in the Exner equa-

tion may lead to the conclusion that by smoothing out
particle activity variations 〈γ(x, t)〉 along the bed, parti-
cle fluctuations dissipate short wavelength perturbations
and so make the bed more stable. Yet, as exemplified
by Turing patterns in certain reaction-diffusion systems
[49], diffusion may amplify instabilities instead of damp-
ening them under a slight perturbation by noise.
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Figure 11: Digital elevation model of the study site (top) and talweg profile along northing (bottom). Blue lines
represent the cross sections employed in the simulations (only 1 of every 5 are shown for the sake of clarity)

4 Numerical Modelling
In this section we present numerical results to describe
the flow hydrodynamics in the upper reach of the gravel
bed Navisence river between Mottec and Zinal glacier
(5.5 km in length), see 11. The mean bed gradient is
4.1%, which is regarded as steep according to geomor-
phological criteria, but this mean slope is shallow in the
mathematical sense (i.e. cos θ ≈ 1), with the impor-
tant consequence that the pressure distribution (across
the depth) is hydrostatic and the Saint-Venant equations
are well-suited.
The river exhibits a rich collection of geomorpholog-

ical features such as steps and pools sequences, mean-
ders, multi-channels and slosh dynamics that increase
flow resistance with respect to regions of quasi-uniform
flow because of mechanical losses due to flow expan-
sion/contraction, dead zones and channel geometry vari-
ations. This pushes us to use cross sectionally averaged
formulations of the Saint-Venant equations as these bet-
ter accounts for streamwise variations of water flow con-
ditions along the river.

4.1 Cross-sectionally Averaged
Saint-Venant Equations

The one-dimensional version of Saint-Venant equations
4-6 can be extended to account for cross sectional varia-
tions as described by Cunge et al. [50]:

∂U
∂t

+ ∂F
∂x

(x,U) = S(x,U), (23)

with
U = (A,Q)T , (24)

F =
(
Q,

Q2

A
+ gI1

)T
, (25)

S = [0, gI2 + gA(S0 − Sf )]T , (26)
in which A is the wetted cross-sectional area and Q ≡ v̄A
is the water flow rate. The term I1 represents a cross-
sectional hydrostatic pressure force,

I1(x,A) =
∫ h(x,A)

0
[h(x,A)− η]σ(x, η)dη, (27)
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Figure 12: Dependence of channel area A, width b, pres-
sure force terms I1 and I2 on the streamwise coordinate
x and flow depth h

in which the surface water level is denoted by h(x,A)
and the local width σ(x, η) at a given depth is

σ(x, η) = ∂A(x, t)
∂η

, (28)

In 26, I2 is the component of the pressure force in the
main stream direction due to the reaction of the walls
arising from shape variations

I2(x,A) =
∫ h(x,A)

0
[h(x,A)− η]∂σ(x, η)

∂x
dη. (29)

The magnitude of this force depends on the cross-
sectional variation for a constant depth. Note that (i)
this approach is underpinned by the hypothesis of grad-
ual variation in flow variables and bed geometry and (ii)
the streamwise gradient of the width is central to the
accurate computation of the total pressure.

In 26, the one-dimensional friction slope term required
to close the model is taken in the form of the Darcy-
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Figure 13: Comparison between inlet and outlet hy-
drographs for several grain sizes in Ferguson’s equation
[53, 54]

Weisbach friction law

Sf = f

8g
|v̄|v̄
Rh

, (30)

where f is the friction factor and Rh is the hydraulic
radius of the channel. The last term 26 is the bed slope
S0 ≡ −∂yb/∂x.
A numerical code was written in Matlab to automat-

ically compute A(x, h), Rh(x, h), b(x, h), I1(x, h) and
I2(x, h) for a given digital elevation model (DEM) and
path. Tabulated data were used in an in-house finite vol-
ume code [51], second-order accurate in space and time,
as follows: unknowns A and Q at every time step were
obtained by solving for 23-30; a bidimensional searching
algorithm was then employed to obtain the value of h
associated with A; next, the terms I1(x, h), I2(x, h) and
Rh(x, h) were updated using quadratic interpolation.
Geometrical inputs give us useful information about

the uniformity of the river channel. For instance, on
inspection of the channel area A, width b and pressure
force terms, I1 and I2, for a fixed water flow depth h
along the streamwise coordinate x, see 12, it is read-
ily observed that b and A remain nearly constant over
3 ≤ x ≤ 4.5 km, whilst there are substantial variations
in the upstream reach for x ≤ 3 km. I1 and I2 exhibit a
similar trend as well as other variables such as Rh (not
shown here for brevity). The channel in the lower reach
indeed corresponds to a narrow, deep, confined, and,
entrenched single thread stream with steep, cascading,
step/pool features and low sinuosity [52]. Conversely, the
upper reach is a braided channel with frequently spaced
scour/depositional bed forms. The complex stream pat-
tern found upstream also exhibits numerous expansions
and contractions, as seen in 12 with the width variations,
which are influenced by gravel pit and anthropogenic
structures.

Taking into account the previous considerations, all of
the terms in 23-30 were included in the simulations. In
doing so, their relative importance can be evaluated a
posteriori to discuss further simplifications.

4.2 Unsteady Simulation of Circadian
Water Discharge Variations

Unsteady numerical results were obtained for a syn-
optic hydrograph measured at the Zinal gauge station
(equipped with geophones to record bed load transport
rates). The water flow discharge was set as an upstream
boundary condition placed at this station. The inlet
cross-section area was determined to impose a critical
Froude number, i.e. A was given by the solution to the

equation Q = A3/2
√
g/b. The characteristic variable ex-

trapolation method was employed at the outlet.
The sensitivity of the numerical results to grain size

was evaluated using Ferguson’s friction factor [53], which
is particularly well suited for uniform regimes in gravel-
bed rivers with constant cross section [54]. 13 shows the
outlet hydrograph obtained for a given inlet discharge
(blue solid line) and characteristic grain sizes of d84 = 5,
10 and 30 cm. Surprisingly the outlet hydrograph pre-
serves the same shape as that fixed at the inlet regardless
of the diameter d84. In a long temporal scale the inlet
and outlet hydrographs nearly collapse. Looking into
the details, we found out a small delay between them,
see the inset of 13, that amounts to a different lag time
ranging from 473 s (d84 = 5 cm) to 931 s (d84 = 30 cm).
An additional numerical simulation was performed using
the Colebrook-White equation [55] with d84 = 10 cm. It
agreed very well with the previous one, showing a lag
time of about 720 s.

Field works were done on 14th October 2012 to mea-
sure the velocity field in situ. It was measured for mod-
erate water discharges between 2 and 8 m3/s at five
points along the reach upstream of the geophones sta-
tion. On average, the standard deviation of the mean
velocity considered at each cross section was quite high
(typically 0.8 m/s) compared to the mean flow veloc-
ity (approximately 2.7 m/s). This could be interpreted
as the occurrence of non-uniform velocity profiles in the
cross section and unsteady turbulent spots. The best
agreement between prediction and mean experimental
values was found with grain diameter values of about
10 cm. Maximum discrepancies were lower than 30 %
when computing f using Colebrook-White’s equation or
Ferguson’s law.

Previous results have important consequences for the
hydraulic modelling of mountain rivers as it sets the va-
lidity of the kinematic wave approximation [56] and fric-
tional laws in non-uniform quasi-steady regimes. We pos-
tulate that the propagation of a hydrograph wave form in
mountain rivers can be computed as the solution to the
first order wave equation (the so-called kinematic wave
equation)

∂Q

∂t
+ c

∂Q

∂x
= 0 , (31)

where the wave speed c has to be estimated for a partic-
ular river reach and flow conditions. In addition, taking
into account that the characteristic period of 24 h as-
sociated with circadian oscillations is much longer than
the characteristic lag time of about 15 min for a reach
of 2 km length, one can further assume a local quasi-
steady regime. So, the water flow depth and the velocity
corresponding to a given discharge Q can be obtained
from the steady state solution of the momentum balance
equation neglecting the gradients of Q, i.e. solving for

v̄
∂v̄

∂x
= g

(
S0 −

∂h

∂x

)
− f

8
|v̄|v̄
Rh

, (32)

in which [50]

∂h

∂x
= 1
A

(
∂I1
∂x
− I2

)
. (33)

Note that the spatial variations of the velocity v̄ and
flow depth h induced by cross section variations in non-
uniform channels may play as important role as the bed
slope S0 and the bottom friction as will be shown in the
next section.
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4.3 Steady State Computations
Steady state numerical simulations were performed for
a realistic range of water discharges from 1 to 30 m3/s.
The water discharge was fixed as an upstream bound-
ary condition together with the area corresponding to a
critical Froude number, similarly to the unsteady case.
A sensitivity study, not shown here for the sake of the
brevity, has proven that the numerical solution taken a
few meters downstream of the inflow is insensitive to the
water depth at the inlet. Hence, in the present case,
flow hydrodynamics only depend on the river geometry,
frictional resistance and discharge.

Numerical simulations were performed sequentially to
save computational time. To this end the step hydro-
gram shown in 14 was set at the inlet. A constant
value of the discharge was maintained during the inte-
gration of 23-30 until a steady state is reached through-
out the whole computational domain. Subsequently, it
was monotonously increased by steps of 1 m3/s ensuring
steady state solutions at every discharge. The numeri-
cal solution obviously satisfies the steady state equation,
32-33, and allow us to evaluate the relative importance
of the bed slope and momentum transfer to the bed (i.e.
hydraulic resistance in uniform channels) relative to the
terms, which can be interpreted as local resistance aris-
ing from the non-uniformity of the channel geometry.

In this context, we sought to evaluate the local energy
variation caused by the non-uniformity of the river chan-
nel, denoted hereafter by Sg and defined as the deviation
of the friction slope Sf with respect to the bed slope S0:

Sg ≡
∣∣∣∣ v̄g ∂v̄∂x + ∂h

∂x

∣∣∣∣ = |S0 − Sf | . (34)

15 shows the percentage value of the geometric slope
Sg scaled by S0 obtained in the numerical simulations
as a function of the water discharge. To make the de-
scription easier, we plotted the average value in the
whole river. The average geometric slope induced by
streamwise variations in the hydraulic variables amount

to more than twenty percent of the bed slope, with a
maximum reached at low stages at which average head
loss approaches 45%. It monotonously decreases as the
flow discharge raises, attaining a minimum asymptotic
value (which is above 20%) for flow discharges exceeding
15 m3/s. This result highlights the clear hydraulic con-
trol exerted by the river channel, which turns out to be
significant at the lowest flow rates. This feature has to be
accounted for in the hydraulic modelling if the objective
is to be accurate.

The Froude number Fr ≡ Q/
√
A3g/b follows a well-

defined trend at all flow discharges, as shown in 16.
Three hydraulic regimes are visible. The flow is super-
critical upstream (x < 1600 m), becomes nearly criti-
cal approximately along the next 2 km and finally re-
turns to the supercritical regime further downstream
(x > 3550 m). The average value of the ratio be-
tween the standard deviation and the mean Froude num-
ber is lower than 14% when Q ranges from 1 to 30
m3/s at any x. A similar behaviour is observed if we
use the one-dimensional definition of the Froude number
Fr1d = v̄/

√
gh (whereas its value differs markedly from

the cross-sectionally averaged one Fr).
This remarkable result demonstrates that the solution

exhibits Froude similarity at leading order. This prop-
erty simplifies and tremendously speeds up the compu-
tation of flow depth and velocity for a given flow dis-
charge. As a matter of fact, assuming that the Froude
number Fr∗ is known at a given location x, for instance
calculating it from field data or by means of numerical
simulations just at one discharge Q∗, the flow depth h at
an arbitrary discharge Q can be obtained by solving the
equation

A3

b
(x, h) = 1

g

(
Q

Fr∗

)2
. (35)

Alternatively, one can solve h and v̄ along the thalweg
from

v̄√
g h

= Fr∗1d with v̄ = Q

A(x, h) . (36)

5 Concluding Remarks
Our project (which started five years ago) has made
steady progress, with some interesting achievements re-
garding the stochastic modelling of sediment transport
and the numerical simulations. Here we summarize the
main findings, speak of the future work, and highlight
some of limitations in our current framework.

5.1 Stochastic Model of Sediment
Transport

Our Markov-process-based approach has addressed at
least two issues in the list of problems enumerated in
§ 2:

• Existence of large non-Gaussian fluctuations and
sediment rating curve: in the absence of collective
entrainment (µ = 0), the fluctuations of N are Pois-
sonian, which leads to a rather simple macroscopic
behaviour [9]. In contrast, for µ > 0, fluctuations
are non-Poissonian and may vary significantly over
time, affecting the macroscopic behaviour by the
growth of spatial correlations, which reflects local
increases in the particle activity. Even for steady
uniform flow conditions (with no bed forms), the
variance of the particle flux may become very large.
For time-dependent flow conditions and especially
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Figure 16: Mean value (black solid line) and standard deviation of the cross section (top) and 1d (bottom) Froude
number for water discharges between 1 and 30 m3/s

when bed forms migrate, the expected behaviour
of fluctuations is quite complicated. The Langevin
equation associated with the Fokker-Planck equa-
tion 9 reveals that the noise structure, characterized
by a square multiplicative noise term, differs signifi-
cantly from the white noise term used by Jerolmack
and Mohrig [19] to model the stochastic develop-
ment of bed forms [10]. Altogether, this provides us
with little reason to believe that in real flow con-
ditions, marked by time dependence and bed form
migration, one can obtain consistent time averages
of the particle activity and sediment transport rates.
In our opinion, this explains the failure in both the
laboratory [45] and the field [57, 58] to arrive at
robust estimates of transport rates when the sam-
pling rate is changed. As a consequence, the idea of
a unique bed load rating curve seems dubious.

• Existence of long correlation lengths and bed forms:
when collective entrainment occurs (µ > 0), the spa-
tial correlation function is nonzero and decays ex-
ponentially; the detail is given in [10]. From the
combined action of the water stream (through Du)
and sediment transport (through the deposition and
entrainment rate difference κ), emerges the correla-
tion length scale `c =

√
Du/κ. Similarly, the auto-

correlation time of the number of moving particles
is tc = 1/κ can be quite long (compared to flow
characteristic times). Collective entrainment is con-
sistent with the incipient phase of dune formation:
for µ > 0, there are areas characterized by high cor-
relations in the particle activity, whose strength is

dictated by the ratio µ/κ. This is likely to cause
nonhomogeneous sediment transport, which in turn
promotes bed form development. From this per-
spective, the initiation of bed structure is the con-
sequence of collective entrainment. The subsequent
development of bed patterns is, however, beyond the
scope of our analytical application as it requires cal-
culating the coupling between the stream and topog-
raphy, and more specifically the effects of turbulence
on particle entrainment.

Another particularly interesting result is related to the
difference between the definition of the sediment trans-
port rate at the micro- and macroscales. We come to
conclusions similar to those drawn by Furbish et al. [31]
about the form that the particle flux should take. The
governing equation of the particle activity 21, derived
from the microscopic description of particle transport,
matches the Exner equation 6 provided that (i) the par-
ticle transport rate is defined at the macroscopic scale
as

q̄s = Q(x, t) = 〈γ〉ūs −
∂

∂x
(Du〈γ〉), (37)

and (ii) the term ∂t〈γ〉 is negligible relative to entrain-
ment and deposition rates. The latter assumption is
well-established [48]. This definition of q̄s differs from
the local definition 3. The interpretation of the present
stochastic analysis closely follows those obtained by Fur-
bish et al.: at the macroscopic scale, diffusive effects
are present in the Exner equation, which modulate, to a
varying degree, the advection term. The significance of
this modulation can be estimated using a dimensionless
Péclet number [10].
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In the coming years, the main tasks concern the ex-
tension of the model to deal with non-uniform flow con-
ditions, which involves studying the difficult question of
the coupling between bed topography, turbulence, and
particle entrainment. Two stumbling blocks remain the
definition of the particle flux and the dependence of
the entrainment and deposition parameter under time-
dependent flow conditions.

In the current framework, there are different possibil-
ities of modelling the particle flux between cells. Here,
we have presented one variant based on the decompo-
sition of the particle flux into advection and diffusion
[10]. Thanks to a Poisson transform, we can simulate the
probability distribution of the particle activity in a con-
tinuous probably space (referred to the a-space above)
and obtain results that should be valid independently of
the cell size. The drawback of this formulation is the
difficulty to get the back-transformation of the particle
activity probability. So, for the moment, we can calcu-
late the moments of the number of moving particles N
(or particle activity γ), but the full probability distribu-
tion (in the physical space) is more difficult to calculate.

Another possibility is to use a system-size expansion of
the discrete probabilities [7]. In that case, the governing
equation of the particle activity can be approximated as
a Fokker-Planck equation (but directly in the physical
space contrary to the previous formulation). The advan-
tage is that the formalism is simpler, with no recourse to
transform. The disadvantage is that this approximation
holds true only for sufficiently large cell sizes.

5.2 Water Flow

A one-dimensional, cross-sectional-averaged Saint-
Venant model has been adopted in order to analyse the
hydraulics of a mountain river (La Navisence, Swiss
Alps) at moderate water flow discharges in which bed
load transport is weak.

The detailed study of circadian variations of the water
discharge has shown that the flow regime is quasi-steady
to leading order. The propagation of an arbitrary dis-
charge wave along the river can be readily computed from
the one-dimensional wave equation 31 in which the wave
speed c is fixed by the bed roughness or grain size d85
and by the main channel geometry.

Strikingly, the thorough analysis of the steady state
solution to the cross-sectionally averaged Saint-Venant
equations 23-30 for a wide range of water flow discharges
have proven the existence of Froude similarity in the flow
processes. This feature is of paramount importance to
the subsequent developments as it allows us to recon-
struct the hydraulic conditions in a river section at any
state Q by simply solving an algebraical system of equa-
tions, given by 35-36, where the input parameters are
the channel bathymetry and the Froude number Fr∗ (or
Fr∗1d) at some discharge Q∗. The Froude number can
be measured experimentally or computed from numeri-
cal simulations.

The value of the Froude number depends greatly on
the definition used: it can be computed using the cross-
section (Fr) or the flow variables along the thalweg
(Fr1d). As shown by 16, the differences between Fr
and Fr1d result from the channel geometry influence on
the fluvial hydraulics since local head variations Sg are
of the same order of magnitude as the bed slope S0, as
shown by 15.
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