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Abstract:

This paper presents a practical approach for adaptive management of dam risk based on robust decision-
making strategies coupled with estimation of climate scenario probabilities. The proposed methodology,
called Multi-Prior Weighted Scenarios Ranking, consists of a series of steps from risk estimation for
current and future situations through the definition of the consensus sequence of risk reduction measures
to be implemented. This represents a supporting tool for dam owners and safety practitioners to help
make decisions for managing dams or prioritizing long-term investments using a cost-benefit approach.
This methodology is applied to the case study of a Spanish dam under the effects of climate change.
Several risk reduction measures are proposed and their impacts are analyzed. The application of the
methodology allows identifying the optimal sequence of implementation measures that overcomes the
uncertainty from the diversity of available climate scenarios by prioritizing measures that reduce future
accumulated risks at lower costs. This work proves that such a methodology helps address uncertainty
that arises from the existence of multiple climate scenarios while adopting a cost-benefit approach that
optimizes economic resources in dam risk management.
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Accounting for climate change uncertainty in long-term dam risk management

1 INTRODUCTION

Risk assessment techniques help implement dam safety management as a comprehensive approach.
Such techniques are applied worldwide in the dam sector (ANCOLD 2003; ICOLD 2005; SPANCOLD
2012; USACE 2011) to support informed safety governance when adopting risk-reduction measures and
their prioritization. Moreover, these approaches are often based on quantitative methods and models,
which depend strongly on the quality and precision of the input data.

Climate change imposes new challenges to the application of risk analysis techniques. Dam risk
management can no longer be envisioned by assuming risk stationarity over long-term operations
(Fluixa-Sanmartin et al. 2019, 2020; USACE 2016). Updating the risk components becomes imperative
to consider new climate scenarios under a more robust approach. Efforts are currently focused on
defining, analyzing, and managing climate change impacts on risks (Chernet et al. 2014; International
Hydropower Association 2019; USACE 2016; USBR 2014, 2016; Willows and Connell 2003).

However, one issue remains challenging: climate-related uncertainties come on top of other uncertainty
sources, which affects the results of risk analysis models and their effectiveness (Morales-Torres et al.
2019). This represents a major roadblock for adaptive decision-making and requires organizations and
individuals to adapt their standard practices and decision procedures (National Research Council (U.S.)
2009). Under uncertain future climate conditions, response strategies that explicitly recognize these
uncertainties are an essential element of decision-making (Khatri and Vairavamoorthy 2011; Street and
Nilsson 2014).

The first aspect to consider is the incorporation of climate (and other) uncertainties into the dam safety
assessment. That is, evaluating their effect on each component of risk, taking into account their
interdependencies. This can be achieved using quantitative risk models, which are useful tools for the
identification and structuration of climate change impacts and uncertainties for each dam risk
component. These models have been recently applied in several studies (Fluixd-Sanmartin et al. 2019,
2020; Morales-Torres et al. 2019).

Secondly, it is important to establish how to incorporate these uncertainties into the process of dam
governance by defining so-called robust adaptation strategies and prioritizing risk reduction
investments. Such strategies seek options to satisfy their purpose across a variety of futures by
integrating a wide range of climate scenarios or model results (Haasnoot et al. 2013; Wilby and Dessai
2010). Recent efforts have been put in applying decision-making approaches to cope with uncertainty
effects in water resources systems (Miao et al. 2014; Minville et al. 2010; Roach et al. 2016; Spence and
Brown 2018), although more work needs to be done in the context of dam safety.

A common economic approach when modeling uncertainty is the use of the expected utility framework
defined by von Neumann and Morgenstern (1944). This technique has been applied in different fields
to make decisions without knowing what outcomes will result from a given decision (Chamberlain 2000;
Danthine and Donaldson 2015; Levitan and Thomson 2009). The goal is to capture such uncertainty by
characterizing the outcome likelihood with a given probability distribution and act accordingly.
Knowing climate change probabilities would allow determining the plausibility of risk conditions, which
leads to more informed decision-making (Dessai and Hulme 2004; Jones 2000).

Nevertheless, the struggle to assign probabilities makes it difficult to support informed decisions (New
and Hulme 2000) since no probabilities have been attached to the future climate scenarios (IPCC 2013).
Even though probabilities are needed for risk and adaptation studies (Pittock et al. 2001), the application
of methods to assign these probabilities remains a controversial topic and require further development
(Knutti et al. 2010a). In addition, the expected utility is highly dependent on the selected configuration
of probabilities and there is a risk of overweighing a particular climate scenario, leading to suboptimal
decisions.



Accounting for climate change uncertainty in long-term dam risk management

Since our knowledge about the climate system is not (yet) of enough quality to assign a unique
probability distribution over states, an alternative to the expected utility framework is the application of
a multiple priors approach. The idea is to use different distributions and assign a weight to each of them
(Garlappi et al. 2004; Heal and Millner 2014). These distributions are then used to evaluate the
convenience of a decision. This approach would help lessen the sensitivity of the expected utility
evaluation to the probability configuration used.

This paper presents a practical approach to support robust decision-makings adapted to dam safety in
the context of climate uncertainty. The goal is to define a complete procedure that allows defining and
prioritizing risk reduction measures based on their short- and long-term efficiency while establishing
the consensus implementation sequence. The usefulness of the approach consists of aggregating multiple
scenarios by applying and adapting the expected utility theory and the multiple priors approach,
providing different results than simply considering a compilation of states. First, the primary uncertainty
sources related to future climate change scenarios are presented. Secondly, a probabilistic approach is
given as focused on evaluating the robustness of measures and on their prioritization strategy. Finally,
the procedure is applied to a real case study of a Spanish dam based on previous risk results (Fluixa-
Sanmartin et al. 2019).

2 CLIMATE CHANGE UNCERTAINTY IN DAM RISK MANAGEMENT

When evaluating the risk of dams as well as other complex structures, two types of uncertainty are
generally distinguished as (Ferson and Ginzburg 1996; Hartford and Baecher 2004):

e Natural uncertainty: Arising from inherent variability in natural processes.

e Epistemic uncertainty: Resulting from not having complete knowledge or information about the
analyzed system.

When studying dam risk management, natural uncertainties can arise from variability in potential flood
magnitudes that occur. Epistemic uncertainties are related to the estimation of fragility curves, which
represent a relationship between the conditional failure probabilities and the magnitude of loads that
produce such failures. Fluixd-Sanmartin et al. (2019) applied a sensitivity analysis to assess how
uncertainty in meteorological modelling affects dam risks. An extract of these results is shown in Figure

(a) Sensitivity analysis on social risk (b) Sensitivity analysis on economic risk
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Figure 1. Effects of precipitation sampling uncertainty on (a) social and (b) economic risks, where the kernel
density plot for each variable is displayed in red on the x and y axes (adapted from Fluixa-Sanmartin et al.
(2019)).

Specific sources of uncertainty can be identified when considering climate change projections. For
example, Hawkins and Sutton (2009) grouped the uncertainties into three major categories: (i) scenario,
(ii) internal climate, and (iii) model uncertainties. Further detailed descriptions of the uncertainty sources
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can be found in other references (Eggleston et al. 2006; European Environment Agency 2017; Knutti et
al. 2010a; Wilby and Dessai 2010). The ensemble of uncertainties is propagated through input data and
models, which inherit prior uncertainties and expand at each step of the process. To address such
uncertainties, it is typical to work with ensemble simulations that combine different regional climate
models (RCMs), scenarios, and models.

Dam risk is subjected to the impact of climate change uncertainties in different ways. The primary
component that is affected by climatic drivers is the hydrology of river basins. Precipitation regimes
play a key role in this component, as do other factors that are highly dependent on temperature, such as
snowmelt and soil moistening/drying. Uncertainties related to these natural aspects will inevitably affect
the evaluation of flood occurrence through its magnitude and frequency. The other component subjected
to the uncertainty of meteorological scenarios is the distribution of water storage in reservoirs. This
determines the loads a dam is subjected to at the moment of flood arrival, which influences its safety
level (SPANCOLD 2012). Surface water availability is expected to fluctuate primarily from variability
in precipitation (IPCC 2014) and evapotranspiration (Kingston et al. 2009; Seneviratne et al. 2010),
which directly impacts reservoir water levels.

Besides natural uncertainty, the socio-economic dimension of climate change impacts must also be
considered. For example, the evaluation of dam risks also includes the potential consequences
downstream from the dam, which are directly related to the exposure and vulnerability of people,
livelihoods, infrastructure, or assets in at-risk areas. The evolution of exposure is subjected to global
socio-economic trends that are attributed to climatic drivers (Choi and Fischer 2003; Neumayer and
Barthel 2011). Moreover, changes in freshwater needs, agricultural land use, water resource
management strategies, and population growth are likely to modify the balance between water
availability and supply, which then directly impact the reservoir water levels. However, such processes
are still poorly known, and the unpredictability of future socio-economic scenarios also accentuates the
uncertainty on the final consequences (Burke et al. 2011).

The aforementioned uncertainties influence the reliability of the results and the adopted adaptation
strategies. This affects how decisions are made and the planning of long-term investments when future
climatic conditions are only conjectured. However, while it is a challenging task, the incorporation of
uncertainties must not prevent decisions from being made. Uncertainty should actually boost strategies
that prevent the considered actions from being inadequate, inappropriate, or increase the vulnerability
(Street and Nilsson 2014). When uncertainty cannot be reduced through data collection, research, or
improved modeling, the incorporation of uncertainty into the decision-making process represents a
suitable option (Schneider 2003).

In the context of climate adaptation in policy making, relevant approaches include adaptive policy
making (Walker et al. 2013, 2001), adaptation pathways (Haasnoot et al. 2012), or real options analysis
(Gersonius et al. 2012; Park et al. 2014). In addition, there are several other methodologies, tools, and
techniques to handle uncertainties in general. A few examples are scenario planning (Swart et al. 2004),
Monte Carlo analysis (Zhang and Babovic 2012), multi-layer decision analysis (Harvey et al. 2012), and
safety margin strategies (Hallegatte 2009).

In this work, the treatment of climate uncertainty in adaptation decision-making relies on a combination
of expected utility theory and a multi-prior approach, based on Cost-benefit analysis (CBA) techniques.

3 A DECISION-MAKING APPROACH INCORPORATING CLIMATE CHANGE
UNCERTAINTY

The approach proposed in this paper is called Multi-Prior Weighted Scenarios Ranking (MPWSR). It
allows overcoming the above-mentioned limitations in the assignation of scenario probabilities by

simultaneously using multiple probability configurations, which leads to lessen the sensitivity and
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increase the robustness of the results. The methodology is based on robust decision-making strategies
coupled with climate scenario likelihoods where each climate projection is associated with a probability,
even if it is only subjective. The ultimate results or recommendations are expressed in the form of a
ranking of measures associated with a certain degree of confidence (or uncertainty). Thus, a 6-step
iterative strategy is proposed in this paper to apply robust decision-making for dam risk management
under climate change uncertainty (see Figure 2). When repeated, this approach ultimately allows
identifying the most favorable sequence of implementable risk reduction measures.

Risk estimation
for current and
future situations

Risk

evaluation

'

Assessment of
impact of measures
on risk

'

——*)

Evaluation of
measures
robustness

Y

Application of
the prioritization
strategy

Figure 2. Flow diagram of the decision-making strategy.

—

Iterative process

3.1 Risk estimation for current and future situations

The first step of the proposed decision-making approach is to estimate risk for the current situation and
its evolution with time. In this context, risk can be defined as the combination of three concepts: what
can happen (dam failure), how likely it is to happen (failure probability), and what its consequences are
(failure consequences including but not limited to economic damage and loss of life) (Kaplan 1997).
Therefore, risk can be obtained through the following formula:

Risk = Y. p(e) - p(fle) - C(fle) (D

where the summation is defined over all events e under the study, risk is expressed in consequences per
year (social or economic), p(e) is the probability of an event that causes failure, p(f|e) is the probability
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of failure due to event e, and C(f|e) are the consequences produced as a result of each failure f and event
e. For simplicity, it is suggested to calculate future risks for a select number of time horizons and then
interpolate between them for arbitrary times within the analysis period.

Risk models are the basic tool to quantitatively assess risk and integrate and connect most variables
concerning dam safety (Ardiles et al. 2011; Bowles et al. 2013; Serrano-Lombillo et al. 2012). By
applying such techniques, Fluixa-Sanmartin et al. (2018, 2019) confirmed that changes in climate, such
as variations in extreme temperatures or the frequency of heavy precipitation events (IPCC 2012; Walsh
et al. 2014), are likely to affect the different components that drive dam risks. These works provide
theoretical and practical guidance on the use of risk models to calculate dam risk evolution under this
approach.

3.2  Risk evaluation

Risks must be evaluated after they are calculated for current and future scenarios. That allows assessing
whether a risk is tolerable and eventually justifies the proposal and implementation of the risk reduction
measures. Judgments and tolerable risk thresholds are introduced in the process (ICOLD 2005), and risk
is generally classified as either unacceptable, tolerable, or broadly acceptable (HSE 2001). Different
organizations have proposed risk tolerability recommendations to evaluate whether dam risk levels are
tolerable or not (ANCOLD 2003; SPANCOLD 2012; USACE 2011; USBR 2011).

It is assumed that risks are likely to evolve with time primarily due to climate change impacts; thus, the
results from risk evaluation evolve as well. Under such circumstances, it is convenient to compare the
present and future situations of a dam in terms of its risk evaluation. The different combinations of dam
evaluation cases based on present and future risks are proposed as presented in Table 1. This may help
identify the sensitivity of dam risk to climate change. The more the dam risk tolerability changes
between present and future conditions, the more the dam is susceptible to climate change impacts.

Table 1. Different dam evaluation cases based on present and future risks.

Present risk

Broadly acceptable Tolerable Unacceptable

Broadly acceptable | II 1T

Future Tolerable v v VI
risk

Unacceptable VII VIII IX

3.3  Definition of potential risk reduction measures

The previous step defines the convenience of adopting a certain risk reduction strategy. A set of potential
risk reduction measures is proposed based on the tolerability scenarios for the computed present and
future risks. However, depending on the resulting classification of the dam from Section 3.2, measures
that are justifiable in the present may not be necessary in the future (e.g., class III in Table 1) and vice
versa (e.g., class VII). This greatly affects not only the type of measures to be applied but also the
decision time horizon. This horizon is the upper limit of the time interval during which the investment
is to be justifiably financed (Lind 2007). This implies that some measures will only be justifiable for
long-term operations.

Moreover, under the uncertainties imposed by climate change scenarios, envisioned risk adaptation
measures must fit the so-called robust approaches. This may help design more robust measures (i.e.,
no/low regret options) and discard those that do not perform well for different climate scenarios (Noble
etal. 2014). The design of adopted measures depends on different factors, which include: risk conditions

-6-
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in the present/future situations; decision time horizon; implementation and operation costs of each
measure; availability of funds; expected lifetime of the dam; technical feasibility of the measure in the
long term; socio-environmental factors; or impact of measures on risk.

Risk analysis techniques rely on the efficiency of measures to optimally reduce dam risks, which creates
options that reduce risk at the lowest cost. To assess such an efficiency, the effects of implementing
these measures on the risks must be evaluated, not only in the short term but also for the future. This is
usually performed by applying the principles of cost-benefit analyses where the total expected cost of
each measure is compared with their total expected benefit (Baecher et al. 1980; Palmieri et al. 2001),
which is in terms of risk reduction here. Different indicators can be used to evaluate dam risk reduction
measures, including social and/or economic terms for the risks (ANCOLD 2003; Bowles 2001, 2004;
Serrano-Lombillo et al. 2013). In general, the measure that reduces the risk with the lowest cost
consequently presents the highest efficiency will be prioritized, which is the measure with the lowest
indicator value.

Fluixa-Sanmartin et al. (2020) presented a methodology to assess the effects of risk reduction measures
in the long term using a proposed risk reduction indicator called the aggregated adjusted cost per
statistical life saved (AACSLS). The AACSLS indicator is used to calculate the total cost of a statistical
life saved over a given period to evaluate the long-term efficiency of the risk reduction strategy. The
prioritization of risk reduction measures can then be defined using this indicator.

3.4  Evaluation of measure robustness

3.4.1 Considerations

In contrast with traditional decision analyses seeking strategies that perform best for a fixed set of
assumptions about the future, under robust decision-making approaches the prioritized measures must
perform well under a wide range of scenarios (Lempert et al. 2003). This work proposes applying the
expected utility theory (von Neumann and Morgenstern 1944; Ramsey 1926; Savage 1972) combined
with multi-prior approach to assess the robustness of measures and apply it to dam safety management.

Based on the expected utility theory, preference for a set of alternatives can be established using a
quantitative valuation of their utility, which can be estimated as the sum of the utility of outcomes
multiplied by their respective probabilities (Davis et al. 1998). The alternative with the highest expected
utility should then be selected. In this case, each outcome measures the efficiency of a risk reduction
measure under an expected climate scenario, and the respective probability designates the likelihood of
such a scenario. Therefore, applying this method requires quantifying the outcome that results from
implementing a specific measure and to assign probabilities to each climate scenario. Despite the
difficulty of finding quantitative methods to assess the preferences among different adaptive strategies
(Lempert et al. 20006), risk reduction indicators in the context of dam safety can be used as they quantify
the efficiency of each alternative (measure) envisioned. This paper proposes using the AACSLS to
quantify the utility of each risk reduction measure under a certain future climate scenario; the core of
the proposed methodology will therefore rely on a Cost-benefit analysis (CBA) approach.

It is necessary to determine which configuration(s) of probabilities are used to evaluate the adaptation
measure suitability while also defining the likelihood of each projection. A practical methodology based
on multi-prior approach is proposed in this work to lessen the sensitivity and increase the robustness of
the process by performing simulations under different configurations. Such a methodology includes two
levels.

First is the generation of a scheme of weighted probabilities configurations, each one describing the
plausibility of the climate future, defined in a prior level or hyperprior. For each configuration, the
different future states (in our case, the climate projections) are assumed having different probabilities of



Accounting for climate change uncertainty in long-term dam risk management

occurrence. The definition of these configurations thus depends on the knowledge of the climate system
and the modelled projections.

Second is to generate the probabilities assigned to each projection and for each configuration. The
resulting ensemble of configurations are presented in the form of modulated probabilities, as shown in
Figure 3.

Figure 3. Example of probability configurations (1 to 5) for different climate projections (CP1 to CP7).

3.4.2 Procedure

Suppose we have N risk reduction measures and P climate scenarios. The process to define the
robustness of this set of measures is repeated M times using the following steps:

a) Calculate the AACSLS indicator (noted x; ) for each risk reduction measure j and for each climate

scenario k.
b) Generate a configuration of probabilities pi associated with each climate scenario k, verifying
that:
k=1Pk =1 2)

The ensemble of probabilities can be generated or modulated based on one of the scenario
weighting schemes presented in Section 3.4.3.

c) Calculate the expected utility E[u(x;)] of each measure j as the weighted average of all possible
outcomes of such a measure under the different envisioned scenarios. This is expressed as the
sum of the products of probabilities (weights) and utilities (AACSLS values) over all possible
scenarios as:

E[u(x)] = Zhe1(pr " %) 3)

d) Rank the measures according to their expected utility. In expected utility theory, preferred actions
are those that present a higher utility; however, the AACSLS presents lower values for more
efficient options. Therefore, when applying this approach, the criterion to be followed in the
expected utility formula is applied inversely and the measure with the lowest Efu(x;j)] is
prioritized. Thus, for each configuration, the M measures have the expected utilities Efu(x;)],
Elu(xz)], ..., E[u(xn)] and associated prioritization orders (PO).

-8-
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e) Repeat M times steps b) to d), where the probabilities pi are redefined. At each repetition of the
process, we assume a different plausibility of the climate futures projected.

The results are expressed in the form of a matrix with M rows and N columns, which define the ranking
or priority order PO;; of the N measures for each probability configuration (Table 2). Once the matrix
is built, a prioritization strategy must be performed to define the most suitable measure.

Table 2. Priority orders of the N risk reduction measures for each probability configuration.

Probability Measure
configuration 1 2 . N
1 PO, PO, PO N
2 PO, PO, ... POy N
M POwm.; POwm2 ... POmN

3.4.3  Scenario weighting scheme

As defined in step b) of Section 3.4.2, each considered climate scenario k must be weighted according
to its relative importance through an associated probability pi. This step is repeated M times.

According to IPCC (2013), no probabilities have been attached to the alternative RCP scenarios (as was
the case for SRES scenarios) and each of them should be considered plausible, as no study has
questioned their technical feasibility. However, in some cases evidences might show that one or several
models are not performing adequately (e.g., unrealistic models for mountain regions in Switzerland
detected in CH2018 (2018)) or that a given ranking of such models is of application. In order to
pertinently apply this information to the analysis, a weighting scheme can be envisaged, although some
critical aspects must be taken into account when assessing climate change model results for such
purposes (Knutti et al. 2010a).

The different weighting schemes proposed in this work to apply the multi-model combination approach
are presented here as:

a) Equal weights. This is the simplest way to construct the multi-model, and it is assumed that all
models and climate scenarios perform similarly. The projections are then considered as
equiprobable (i.e., p;=p>=...=pp=1/P in Eq.(3)). It has been demonstrated that on average, an
equally weighted multi-model consistently outperforms single models (Knutti et al. 2010b;
Weigel et al. 2010). In this case, unless the subset of projections varies among each probability
configuration, the procedure described in Section 3.4.2 consists of a unique configuration, and
Table 2 would contain only a single row. This option may be adequate when all climate scenarios
are considered equally plausible, as suggested by IPCC (2013).

b) Pure random weights. In this case, probabilities are randomly generated while verifying that their
sum is always equal to 1 (Eq. (2)).

¢) Based on subjective criteria. Weights can also be established based on subjective criteria to give
preference to cases that better suit the objectives or conditions of the study. Such weighting can
be performed at the global/regional climate model level (GCMs/RCMs) and/or of the
representative concentration pathways (RCPs).

d) Based on climate model performance. There are different available techniques for model
weighting based on multiple performance metrics. For example, Christensen et al. (2010)
explored the applicability of combining a set of six performance metrics to produce one
aggregated model weight. Giorgi and Mearns (2002) weighted the results from an ensemble of

9.
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GCMs based on two criteria: 1) the skill with which an individual model reproduces historic
climate change, and 2) the extent to which the projections of an individual model converge to the
ensemble mean. However, as stated in Weigel et al. (2010), if the weights do not appropriately
represent the true underlying uncertainties, weighted multi-models may perform worse than
equally weighted approaches.

Such schemes can be applied to the entire ensemble of available climate projections or to a subset of
them. This is true when one of the several projections are not reliable or when they are ill-suited for the
study case. The subset of projections itself may even vary between each repetition (step (e) in Section
3.4.2).

A particular case of ensemble subsetting is presented when a single climate projection is used, although
this does not correspond stricto sensu with a robust decision-making approach. This may be true when
only one climate projection is available, or when the objective is to plan risk adaptation based on the
worst-case scenario, i.e., choosing the projection that presents the highest risk. However, this approach
is not recommended because it may lead to an unrealistic scenario. In addition, it is not always simple
or automatic to identify the worst-case climatic model, and the concept of highest risk varies because
the risk can evolve with time (Fluixa-Sanmartin et al. 2019).

3.5 Definition of prioritization strategy

When applying the expected utility theory to a specific probability configuration, the alternatives with
the highest utility value (or lowest AACSLS, in this case) should be prioritized. However, the results
from previous steps are given in the form of a table with multiple probability configurations and multiple
classifications of alternatives or rankings (Table 2). A prioritization strategy that considers such diverse
results is therefore needed. Four approaches are proposed in this paper: (i) average ranking, (ii)
likelihood of rankings, (iii) index of ranking coincidence, and (iv) consensus ranking.

3.5.1 Average ranking

The simplest approach is to assess the preferences of each measure based on its average priority order
from the corresponding row in Table 2. That is, the final priority order PO; of each measure j among
the M probability configurations is defined as:

M P
po, = 2=1(POu)/ (4)

The measure with the lowest final PO value is then prioritized, which is equivalent to averaging the
rankings and then ranking the averages. Although simple in application, this approach may
underestimate the possible non-linearities due to the sequential application of risk reduction measures.
To increase its robustness, this methodology should be complemented with the use of additional
descriptive statistics (e.g., median, mode, and standard deviation of the PO;)) as well as with descriptive
graphics (e.g., boxplots) to detect possible dispersion in the results.

3.5.2 Likelihood of rankings

This technique consists of assigning a probability to a certain ranking depending on how many times
the ranking is repeated across the columns of Table 2. First, all plausible rankings of the measures are
identified by removing duplicates from Table 2. Then, the frequency of coincidences for each ranking
is calculated as the number of times it is repeated divided by the total number M of tested probability
configurations. Finally, the scale proposed by Mastrandrea et al. (2010) is used to sort the rankings by
their rate of recurrence and to classify them by their probability or likelihood of suitability (Table 3).
The ranking with highest preference is selected.

-10-
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By considering each ranking independently, this method cannot capture the similarity of ranking pairs.
For example, among the following prioritization rankings, A and B (where alternatives 2 and 1 are the
most suitable) are much more similar than ranking C. However, each ranking is treated as a separate
entity without correlation with the others. This ineffectiveness is reduced when testing more probability
configurations.

e Ranking A:2,1,4,5,3
e RankingB:2,1,5,4,3
e Ranking C:5,4,3,1,2

Table 3. Classification of the ranking preference according to their frequency (adapted from Mastrandrea et

al. (2010)).
Frequency of ranking Preference of ranking
>99% Exceptionally high

90% - 99% Very high
60% - 90% High
33% - 66% About as preferable as not
10% - 33% Low

1% - 10% Very low

0% - 1% Exceptionally low

3.5.3  Index of ranking coincidence

Morales-Torres et al. (2019) proposed a methodology to consider epistemic uncertainty for risk-
informed management. They developed an index of coincidence to measure the effects of uncertainty
when calculating the prioritization sequences. The index quantifies differences in the order of measures
between each sequence issued from the results of a second-order probabilistic risk analysis and the
reference sequence obtained from the averages of the first-order risk analysis.

Therefore, a new index is proposed in this work to obtain the likelihood of an ensemble of rankings for
measures with respect to a series of reference rankings. The index of ranking coincidence (IRC) is
expressed as:

|Po(.r)-Pol-

M (5N /=Py
Zl=1<21=1<1 max(POS.r)—LN—POS.T))))
IRC = &)

M-N

where M is the number of probability configurations tested, N is the number of proposed measures,
P Oj(r) is the priority order of measure j in the reference ranking, and PO is the priority order of measure

j in the ranking from probability configuration i. It is noted that the expression max(PO,"-1,N-PO;")
represents the maximum possible distance between the priority orders of the reference and the compared
rankings.

The proposed procedure based on this index is as follows:

o Extract the N/ permutations without repetition of the N envisioned measures

e Consider each permutation as a reference ranking to calculate the /RC compared with the rest of
the M rankings

e The ranking representing the highest /RC is adopted

-11-



Accounting for climate change uncertainty in long-term dam risk management

3.5.4 Consensus ranking

A more complex approach consists of applying consensus ranking analyses. The resulting prioritization
matrix given in Table 2 represents a set of M ordinal rankings of N risk reduction measures. The goal is
to define a consensus ranking that presents the maximum degree of consensus within the M rankings.
This technique has received growing consideration over the past few years and has been widely used in
a variety of domains (Leyva Lopez and Alvarez Carrillo 2015; Luo et al. 2018; Meila et al. 2012; Plaia
et al. 2019).

The procedure consists primarily of two stages. First, the agreement between rankings needs to be
quantified, which can be achieved through dissimilarity or distance measures between the rankings. The
most common measures are those related to distances or correlations. The measures related to distances
evaluate the distance between any two elements in the set of N ordered objects (Farnoud Hassanzadeh
and Milenkovic 2014). Rank correlation coefficients measure the degree of similarity between two
rankings by associating a value of +1 to those in full agreement and -1 to those in full disagreement (and
all others in between). A large assortment of methods can be used to accomplish this (Kendall and
Gibbons 1990). Typical examples of metrics in this framework are Spearman’s p and Kendall’s t
(Kendall 1938). Spearman’s p is the sum of square differences in the ranks at which items appear, while
Kendall’s 1 is based on the concept of measuring the minimum number of interchanges for adjacent
ranked objects as required to transform one ranking into the other. However, other metrics, such as the
Kemeny distance (Kemeny and Snell 1962) or the 1« of Emond and Mason (Emond and Mason 2002),
have been developed to solve different limitations of common methods.

Second, the agreements among rankings must then be combined to identify a compromise or a
consensus. The objective is to select the ranking that maximizes the average correlation with (or,
equivalently, minimizes the average distance to) the M rankings. Different strategies and algorithms can
be used for complex problems (Amodio et al. 2016; Emond and Mason 2002).

In the context of the proposed prioritization strategy and similar to the previous strategy, the suggested
approach includes:

o Extract the N/ permutations without repetition of the N envisioned measures

e For each permutation, measure the agreement with the remaining M rankings using one of the
available metrics

e Choose the combination that verifies the defined consensus criteria

3.6 Identification of sequence of implementation

The proposed approach is an iterative process that must be repeated (steps 2 to 6 in Figure 2) until the
sequence of implementation for all measures is obtained. In its first iteration, the entire set of risk
reduction measures is ranked from best- to worst-suited, and the best measure is selected as the first to
be implemented. At each new iteration, the new base state is defined from the previous implemented
measures and the effects of the remaining proposed measures are analyzed. The process is applied again,
but to the set of measures not including the ones selected from the previous iterations. A sequence of
measures is finally obtained after this process is consecutively followed. Hence, the procedure does not
intend to choose between different alternatives but prioritizes them by assuming that sufficient time and
resources would allow all of them to be implemented. Although the final sequence may not be
systematically the optimal option, it is intended to be the most agreed not only among all the climate
projections but across the different probability configurations.

For each iteration, the decision time horizon and the time of implementation of the measures must be
re-assessed based on the efficiency of the previous measures and on other factors such as the remaining
funding capacity or the program of scheduled maintenance works.
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4 CASE STUDY

The proposed methodology was applied to the case study of a Spanish dam from the Duero River Basin
Authority. The Santa Teresa dam is a concrete gravity dam built in 1960 with a height of 60 m and a
length of 517 m. The reservoir has a capacity of 496 hm? at its normal operating level and is bound by
the Santa Teresa dam and a smaller auxiliary dike. The dam is equipped with a spillway regulated by
five gates capable of relieving a total of 2,017 m¥s with two bottom outlets each having a release
capacity of 88 m?¥/s.

The effects of climate change on the failure risk of this dam through the end of the 21* century were
assessed by Fluixd-Sanmartin et al. (2019). It is worth mentioning that, although there may be other
sources of uncertainty embodied in other risk components, in this assessment a first-order probabilistic
analysis (Pate-Cornell 2002) for the structural response was carried out. This assumes a mean
conditional failure probability for each loading state (p(f|e) from Eq. (1)), which allows us to focus on
the influence of climate-related uncertainties.

An overall risk increase is expected based on most scenarios, which indicates significant risk uncertainty
as given by the dispersion in the climate projection inputs. This highlights the difficulty of unequivocally
defining recommendations for dam owners and managers on how to develop and implement risk
reduction strategies. Such issues impose a need to address the associated uncertainty of climate modeling
under a decision-making approach. Therefore, this approach was used to define a robust decision-
making strategy for risk reduction under climate uncertainty based on the procedure displayed in Figure
2.

4.1 Risk estimation

The authors used in Fluixd-Sanmartin et al. (2019) a risk model for the dam with the iPresas software
(iPresas 2019) to compute the associated failure risks for current conditions and for future climate
scenarios. This study integrated the various projected effects acting on each component of the risk, and
was based on existing data and models from different sources such as climate projections, historical
hydro-meteorological data or the water resource management model. It is worth mentioning that the
reservoir’s exploitation rules were extracted from the current Hydrological Plan of the Duero River
Basin (Confederacién Hidrografica del Duero 2015) and were adapted based on the the expected
population evolution in the study area. A complete description of the model and the methodology
followed to obtain future risks can be found in Fluixd-Sanmartin et al. (2019).

The analysis was applied using 21 climate projections (CPs) extracted from the World Climate Research
Programme (WCRP) Coordinated Regional Downscaling Experiment (CORDEX) project (Giorgi et al.
2009) that encompassed three RCPs (RCP2.6, RCP4.5 and RCP8.5). This gave a total of 47
combinations of CPs and RCPs (Table 4).

The results were obtained over four periods (1970-2005; 2010-2039; 2040-2069; and 2070-2099), which
were used as reference points (years 2005, 2039, 2069, and 2099, respectively) to interpolate the risk
and failure probability for any given year. Accordingly, the evolution of risk for each CP—RCP
combination through the end of the 21* century was calculated.

4.2  Risk evaluation

The USBR tolerability criteria (USBR 2011) was applied to determine the convenience of implementing
mitigation measures. These tolerability guidelines were represented on an f-N graph where the vertical
axis represents the failure probability and the horizontal axis represents the average life loss, which can
be obtained by dividing the social risk by the failure probability.
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Table 4. List of climatic projections (CP) used in the case study showing the driving GCM, ensemble

member, institute, and RCM for each where the RCP is available.

ID Driving GCM Ensemble Institute RCM RCP2.6 RCP4.5 RCP8.5
CNRM-CERFACS- . CCLM4-8-
CP1 CNRM-CM5 rlilpl CLMcom 17 X X
CNRM-CERFACS- .

CP2 CNRM-CM5 rlilpl SMHI RCA4 X X

CP3 ICHEC-EC-EARTH r12ilpl CLMcom CCLII\;M'& X X X

CP4 ICHEC-EC-EARTH rl2ilpl KNMI RACMO22E X X X

CP5 ICHEC-EC-EARTH rl2ilpl SMHI RCA4 X X X

CP6 ICHEC-EC-EARTH rlilpl KNMI RACMO22E X X

CP7 ICHEC-EC-EARTH r3ilpl DMI HIRHAMS X X X

CP8 IPSL-IPSL-CM5A-LR rlilpl GERICS REMO2015 X

CP9 IPSL-IPSL-CM5A-MR rlilpl IPSL- WRF331F X X

P INERIS
CP10  IPSL-IPSL-CM5A-MR rlilpl SMHI RCA4 X X
CP11  MOHC-HadGEM2-ES rlilpl CLMcom CCLll\;M'g' X X
CP12  MOHC-HadGEM2-ES rlilpl DMI HIRHAMS X
CP13 MOHC-HadGEM2-ES rlilpl KNMI RACMO22E X X X
CP14  MOHC-HadGEM2-ES rlilpl SMHI RCA4 X X X
CP15 MPI-M-MPI-ESM-LR rlilpl CLMcom CCLII\;I4-8- X X
CP16 MPI-M-MPI-ESM-LR rlilpl MPI-CSC REMO2009 X X X
CP17 MPI-M-MPI-ESM-LR rlilpl SMHI RCA4 X X X
CP18 MPI-M-MPI-ESM-LR r2ilpl MPI-CSC REMO2009 X X X
CP19 NCC-NorESM1-M rlilpl DMI HIRHAMS X X
CP20 NCC-NorESM1-M rlilpl SMHI RCA4 X
NOAA-GFDL-GFDL- .

CP21 ESM2G rlilpl GERICS REMO2015 X

An initial limit was set at a failure probability of 10 years™, which is related to individual risk, public
responsibility of the dam owner, and protecting the image of the organization. A second limit was set
for social risk, suggesting a maximum of 107 lives/year. These limits define two areas. The upper
(lower) area indicates that the risk reduction measures are more (less) justified when further from the
limit lines. Moreover, a limit on consequences is placed on the value of 1,000 lives. If the risk is to the
right of this line, risks should be evaluated carefully, ensuring the as-low-as-reasonably-practicable
(ALARP) considerations are addressed. The ALARP suggest that tolerable risks should only be assumed
if their reduction is impracticable or the cost of such reductions is disproportional to its safety gain.

Figure 4 presents the results corresponding to the year 2019, which were calculated using linear
interpolation of the risks for the four different periods described before. Each point represents the 2019
projected dam risk situation based on a certain CP-RCP combination. The USBR recommendations
suggest that none of the cases indicate an urgent need for risk reduction measures.
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However, the results show a progressive deterioration of the dam risk conditions for most of the
projections. For example, Figure 5 shows the risk in 2059 is confronted with the USBR tolerability
criteria. As risk progresses with time, more cases are found to be above the tolerability limits. Therefore,
the need for risk mitigation becomes progressively more important.

USBR Dam Safety Risk Guidelines - 2019
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life based on the risk results for 2019.
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4.3  Definition of risk reduction measures

The results justify the implementation of risk reduction measures to address risk in the medium and long
term. Four measures are proposed based on prior risk analyses performed on a set of dams from the
Duero River Basin Authority (Ardiles et al. 2011; Morales-Torres et al. 2016) combining the
recommendations of failure mode identification working sessions and the actions foreseen by the dam
manager. Quantitative risk results were used to select the most efficient options for further analysis and
prioritization. In addition, two measures (C and D) were designed selecting the most efficient
configuration of wall height and spillway crest level by comparing its costs with the risk reduction
achieved. A description of each measure is presented below, and the corresponding implementation and
operation costs are provided in Table 5.

e Measure A: Implementation of an emergency action plan. This measure reduces the potential
societal consequences of dam failure by applying adequate protocols and systems for warning and
evacuating the downstream population. Measure A does not impact the failure probability or
economic risk, but only affects social risk as it only addresses the exposure of at-risk populations.

e Measure B: Construction of a continuous concrete parapet wall with height of 1.5 m along the
dam and the auxiliary saddle dam. The direct effect is an increased dam freeboard, which reduces
the probability of overtopping.

e Measure C: Lowering the spillway crest level by 1.5 m and replacing the Tainter gates that
regulate the outflows. This increases the discharge capacity through each gate from 403 m?/s at
its nominal operating level up to 588 m%s.

e Measure D: Implementation of an enhanced maintenance program for spillway gates. The gate
reliability is assumed to progressively deteriorate with time. Under this measure, the individual
reliabilities are conserved, which reduces future dam failure risks.

Table 5. Implementation and maintenance costs for each risk reduction measure.

Measure  Implementation cost Operation cost
A 601,528 € 30,076 €/year
B 479,413 € 0 €/year
C 2,817,365 € 0 €/year
D 0€ 82,750 €/year

4.4  Estimation of the efficiency in risk reduction for each measure

The risk model was used to compute the evolution of social and economic risks through the end of the
21% century by considering the effects of each measure on the different dam safety components. This
assesses the efficiency of each measure and for each future scenario by applying the AACSLS indicator
(Fluixa-Sanmartin et al. 2020). One of the key factors in assessing the efficiency of each measure using
the AACSLS is the definition of the decision time horizon, which is the upper limit of the time interval
during which the investment is justifiably financed (Lind 2007). Given the age of the Santa Teresa dam
and the functionality of the proposed risk reduction measures, the decision time horizon was set to 40
years. Thus, the study period is from 2019 to 2059.

Once the indicator was computed, the four proposed risk reduction measures were ranked for each of
the 47 CP-RCP combinations using only the AACSLS indicator (lower AACSLS values indicate more
efficient options). Figure 6 shows the uncertainty behind the analysis as the number of combinations
that lead to a specific priority order for each measure. As a result, it appears that Measure A is ranked
primarily in the 2™ position and Measure D is in last position. However, it remains unclear what
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positions (1** and 3™) occupy Measures B and C. This highlights the need for a more robust approach to
define the sequence of measures to implement.

4.5 Multi-model combination

Next, the Multi-Prior Weighted Scenarios Ranking method was applied. The robustness of the four
measures were first evaluated, and a total of 100 probability configurations were established. For each
configuration, a set of 47 probabilities were generated and associated with each CP and RCP
combination. The scenario weighting scheme was then used to produce purely random probabilities.
Next, the expected utility of each measure j was calculated following Eq. (3) to establish the measure
ranking based on the increasing expected utility. For each probability configuration, the measures were
prioritized and a table analogous to Table 2 was obtained from their prioritization orders.

4.6  Prioritization strategy

Once the rankings were obtained for the 100 tested probability configurations, the four prioritization
strategies were applied. These measures are the average ranking, likelihood of rankings, index of ranking
coincidence, and consensus ranking (in this case, using the Spearman’s p rank correlation coefficient to
quantify the agreement between rankings).

4.7  Identification of the implementation sequence

The procedure from steps 2 to 6 of Figure 2 has been sequentially applied to identify the optimal
sequence of risk reduction measures. The procedure was repeated at each implementation step (i.e.,
considering each step as the case with the previous measures already implemented to analyze the effects
of the remaining proposed measures) until the sequence of measures was finally obtained.

At each step of the implementation, the same prioritization ranking of measures was consistently
obtained with all the tested methods, which highlights the robustness and high confidence of the choices
made. It is noted that a waiting period of 2 years was fixed between each measure implementation to
account for budget limitations and the completion of measures. Subsequent application of this procedure
led to the following sequence of measure implementation (Table 6):

o [*step: Measure B
e 2" gstep: Measure A
e 3" gstep: Measure C
e 4" gtep: Measure D

The homogeneity of the obtained results is in contrast with the uncertainty shown in Figure 6, which
emphasizes the convenience of the proposed approach.

Moreover, the risks in 2059 (after the 40-years decision time horizon) resulting from the sequential
implementation of the four measures were computed and are presented in Figure 7. Starting with the
base case situation in 2059 (Figure 5), a progressive reduction in both the failure probability and life
loss is observed as the measures are implemented. It is noted that some measures, such as B or C, reduce
both the failure probability and the average consequences. However, as mentioned above, Measure A
only reduces the societal consequences and does not impact the failure probability.
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Table 6. Order of implementation in the sequence of risk reduction measures based on each of the proposed

prioritization strategies.

Measure
Strategy A B c D
Average ranking 2 1 3 4
Likelihood of rankings 2 1 3 4
Index of ranking coincidence 2 1 3 4
Consensus ranking 2 1 3 4
- @
Number of

cases:

Priority order

Measure

Figure 6. Number of cases (CP-RCP combinations) leading to the priority order for each risk reduction

measure.

Furthermore, as the implementation of the measures progresses, progressively fewer cases are above the
tolerability criteria. For example, after implementing Measure A, all cases are below the social risk limit
of 1072 lives/year. While this would imply that the implementation of further measures is no longer
justified, risk is expected to continue to rise through the end of the 21 century. Therefore, the measures
that may not be entirely justified for a specific period could be necessary when considering a wider time
horizon.

It is noted that current USBR guidelines do not include the temporal dimension in their criteria,
indicating they do not account for the influence of climate change. Therefore, a re-definition of such
recommendations is worthwhile. After revising these criteria, the proposed methodology is re-defined
or techniques to update its application are established.

Moreover, in order to assess the sensitivity of the results to the weighting scheme selected, the analysis
has been repeated using the “Equal weights” scheme instead of purely random probabilities. In this case,
the procedure consists of a unique configuration where all climate projections have equal probabilities.
According to the results, the same sequence of measure implementation as in Table 6 has been obtained
for the four proposed prioritization strategies.

-18-



Accounting for climate change uncertainty in long-term dam risk management

USBR Dam Safety Risk Guidelines - 2059
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Figure 7. Representation of the f-N points for the estimated failure probability and loss of life in 2059 after
sequentially implementing (a) Measure B, (b) Measures B and A, (c) Measures B, A and C, and (d) Measures
B, A, CandD.

5 CONCLUSIONS

Advances are being made towards adaptation approaches for dam risk management under the influence
of climate change to help dam owners and safety practitioners in their decision-making processes.
However, some factors remain a challenge and must be comprehensively integrated in such a process.
In particular, further efforts that address the intrinsic uncertainties related to climate change are needed.
This work presents an innovative approach on dealing with climate uncertainty applied to dam risk
management based on robust decision-making strategies coupled with climate scenario probabilities
assignation.

The proposed Multi-Prior Weighted Scenarios Ranking approach encompasses a complete procedure
that allows defining and ranking risk reduction measures based on their efficiency on short- to long-
term operations. The methodology helps to establish the consensus sequence of risk reduction measures
to be implemented by integrating the uncertainty of future scenarios. It guides the dam practitioner in
selecting the scenario weighting scheme as well as in defining the alternatives prioritization strategy,
while introducing a new index (IRC) to obtain the likelihood of an ensemble of rankings for measures.
The usefulness of the approach consists of aggregating multiple scenarios by applying and adapting the
expected utility theory and the multiple priors approach, providing different results than simply
considering a compilation of states. The final result will be expressed as the most agreed sequence of
measures, not only among all the climate projections considered, but across the different probability
configurations.
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The developed methodology was applied to the case study of a Spanish dam for which the risks were
quantified for present and future states using a quantitative risk model. The results revealed the need for
mitigation measures to reduce risks in the medium and long term. Four risk reduction measures were
proposed and their effects analyzed. Different prioritization strategies were tested and the resulting
measure rankings were compared for each implementation step using the AACSLS indicator and a
multi-model combination procedure. Finally, the most favorable sequence of measure implementations
was obtained, which prioritizes those that reduce future accumulated risk at lower costs. The results
indicate a homogeneous portrayal of the most convenient and agreed courses of action for risk
adaptation. It was demonstrated that such a methodology helps cope with uncertainty that arises from
the existence of multiple climate scenarios while adopting a cost-benefit approach to help optimize
economic resources in dam risk management.

Although climate change-related uncertainty was addressed in this work, other sources of uncertainty
remain highly influential in dam risk assessment and should be integrated in a comprehensive approach
for decision-making. Some of these include incomplete knowledge of the dam behavior (e.g., fragility
curves) while others are affected by the intrinsic variability of climatic and environmental systems, or
the effect of socioeconomic scenarios on the exploitation rules of the dam-reservoir system. Moreover,
the assessment of climate change impacts on dam safety incorporates a series of limitations that remain
a challenge, as raised in previous references of the authors (Fluixd-Sanmartin et al. 2018, 2019, 2020).
This type of strategies would therefore benefit from complete analyses combining all sources of
uncertainty, thus allowing to support decisions based on all of them altogether. Under this perspective,
the advantage of using the risk modelling approach is that the impact of all types of uncertainties on
each component of the risk can be easily identified and analysed, taking into account their potential
interrelations.

6 REFERENCES

Amodio, S., D’Ambrosio, A., and Siciliano, R. (2016). “Accurate algorithms for identifying the median ranking
when dealing with weak and partial rankings under the Kemeny axiomatic approach.” European Journal of
Operational Research, 249(2), 667-676.

ANCOLD. (2003). Guidelines on Risk Assessment. Australian National Committee on Large Dams.

Ardiles, L., Sanz, D., Moreno, P., Jenaro, E., Fleitz, J., and Escuder-Bueno, I. (2011). “Risk Assessment and
Management for 26 Dams Operated By the Duero River Authority (Spain).” Proceedings of the 6th
International Conference on Dam Engineering, 15-17 February 2011, LNEC, Lisbon, Portugal, C. Pina, E.
Portela, and J. Pereira Gomes, eds., CI-Premier Pte Ltd, Singapore.

Baecher, G. B., Paté, M. E., and De Neufville, R. (1980). “Risk of dam failure in benefit-cost analysis.” Water
Resources Research, 16(3), 449-456.

Bowles, D. (2001). “Advances in the practice and use of portfolio risk assessment.” ANCOLD Bulletin, Australian
National Committee on Large Dams, Australia, 21-32.

Bowles, D. (2004). ALARP Evaluation Using Cost Effectiveness and Disproportionality to Justify Risk Reduction.
Bulletin 127. Australian National Committee on Large Dams (ANCOLD), 89-106.

Bowles, D., Brown, A., Hughes, A., Mortris, M., Sayers, P., Topple, A., Wallis, M., and Gardiner, K. (2013). Guide
to risk assessment for reservoir safety management, Volume 2: Methodology and supporting information.
Environment Agency, Horison House, Deanery Road, Bristol, BS1 9AH, 329.

Burke, M., Dykema, J., Lobell, D., Miguel, E., and Satyanath, S. (2011). Incorporating Climate Uncertainty into
Estimates of Climate Change Impacts, with Applications to U.S. and African Agriculture. National Bureau of
Economic Research, Cambridge, MA.

CH2018. (2018). CH2018 — Climate Scenarios for Switzerland. Technical Report, National Centre for Climate
Services, Zurich, 271.

Chamberlain, G. (2000). “Econometric applications of maxmin expected utility.” Journal of Applied
Econometrics, 15(6), 625-644.

-20-



Accounting for climate change uncertainty in long-term dam risk management

Chernet, H. H., Alfredsen, K., and Midttemme, G. H. (2014). “Safety of Hydropower Dams in a Changing
Climate.” Journal of Hydrologic Engineering, 19(3), 569—582.

Choi, O., and Fischer, A. (2003). “The Impacts of Socioeconomic Development and Climate Change on Severe
Weather Catastrophe Losses: Mid-Atlantic Region (MAR) And the U.S.” Climatic Change, 58((1-2)), 149—
170.

Christensen, J., Kjellstrdm, E., Giorgi, F., Lenderink, G., and Rummukainen, M. (2010). “Weight assignment in
regional climate models.” Climate Research, 44(2-3), 179—-194.

Confederacién Hidrografica del Duero. (2015). Plan Hidrologico de la parte espaiiola de la demarcacion
hidrogrdfica del Duero. 2015-2021. Valladolid, Spain.

Danthine, J.-P., and Donaldson, J. B. (2015). “Making Choices in Risky Situations.” Intermediate Financial
Theory, Elsevier, 55-86.

Davis, J. B., Hands, D. W., and Miki, U. (Eds.). (1998). The handbook of economic methodology. Cheltenham,
UK ; Northampton, MA, USA.

Dessai, S., and Hulme, M. (2004). “Does climate adaptation policy need probabilities?”” Climate Policy, 4(2), 107—
128.

Eggleston, H. S., Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme,
and Chikyd Kankyd Senryaku Kenkyt Kikan. (2006). 2006 IPCC guidelines for national greenhouse gas
inventories.

Emond, E. J., and Mason, D. W. (2002). “A new rank correlation coefficient with application to the consensus
ranking problem.” Journal of Multi-Criteria Decision Analysis, 11(1), 17-28.

European Environment Agency. (2017). Climate change, impacts and vulnerability in Europe 2016: An indicator-
based report.

Farnoud Hassanzadeh, F., and Milenkovic, O. (2014). “An Axiomatic Approach to Constructing Distances for
Rank Comparison and Aggregation.” IEEE Transactions on Information Theory, 60(10), 6417-6439.

Ferson, S., and Ginzburg, L. R. (1996). “Different methods are needed to propagate ignorance and variability.”
Reliability Engineering & System Safety, 54(2-3), 133—144.

Fluixa-Sanmartin, J., Altarejos-Garcia, L., Morales-Torres, A., and Escuder-Bueno, 1. (2018). “Review article:
Climate change impacts on dam safety.” Natural Hazards and Earth System Sciences.

Fluixd-Sanmartin, J., Escuder-Bueno, 1., Morales-Torres, A., and Castillo-Rodriguez, J. T. (2020).
“Comprehensive decision-making approach for managing time dependent dam risks.” Reliability Engineering
& System Safety, 203, 107100.

Fluixd-Sanmartin, J., Morales-Torres, A., Escuder-Bueno, 1., and Paredes-Arquiola, J. (2019). “Quantification of
climate change impact on dam failure risk under hydrological scenarios: a case study from a Spanish dam.”
Natural Hazards and Earth System Sciences, 19(10), 2117-2139.

Garlappi, L., Wang, T., and Uppal, R. (2004). “Portfolio Selection with Parameter and Model Uncertainty: A
Multi-Prior Approach.” SSRN Electronic Journal.

Gersonius, B., Morselt, T., van Nieuwenhuijzen, L., Ashley, R., and Zevenbergen, C. (2012). “How the Failure to
Account for Flexibility in the Economic Analysis of Flood Risk and Coastal Management Strategies Can Result
in Maladaptive Decisions.” Journal of Waterway, Port, Coastal, and Ocean Engineering, 138(5), 386-393.

Giorgi, F., Jones, C., and Asrar, G. R. (2009). “Addressing climate information needs at the regional level: the
CORDEX framework.” WMO Bulletin, 58, 175-183.

Giorgi, F., and Mearns, L. O. (2002). “Calculation of Average, Uncertainty Range, and Reliability of Regional
Climate Changes from AOGCM Simulations via the ‘Reliability Ensemble Averaging’ (REA) Method.”
Journal of Climate, 15(10), 1141-1158.

Haasnoot, M., Kwakkel, J. H., Walker, W. E., and ter Maat, J. (2013). “Dynamic adaptive policy pathways: A
method for crafting robust decisions for a deeply uncertain world.” Global Environmental Change, 23(2), 485—
498.

Haasnoot, M., Middelkoop, H., Offermans, A., Beek, E. van, and Deursen, W. P. A. van. (2012). “Exploring
pathways for sustainable water management in river deltas in a changing environment.” Climatic Change,
115(3—4), 795-819.

21-



Accounting for climate change uncertainty in long-term dam risk management

Hallegatte, S. (2009). “Strategies to adapt to an uncertain climate change.” Global Environmental Change, 19(2),
240-247.

Hartford, D. N. D., and Baecher, G. B. (2004). Risk and uncertainty in dam safety. Thomas Telford, London.

Harvey, H., Hall, J., and Peppé, R. (2012). “Computational decision analysis for flood risk management in an
uncertain future.” Journal of Hydroinformatics, 14(3), 537-561.

Hawkins, E., and Sutton, R. (2009). “The Potential to Narrow Uncertainty in Regional Climate Predictions.”
Bulletin of the American Meteorological Society, 90(8), 1095-1108.

Heal, G., and Millner, A. (2014). “Reflections: Uncertainty and Decision Making in Climate Change Economics.”
Review of Environmental Economics and Policy, 8(1), 120-137.

HSE. (2001). Reducing risks, protecting people: HSE’s decision-making process. HSE Books, Sudbury.

ICOLD. (2005). Risk assessment in dam safety management. A reconnaissance of benefits, methods and current
applications. Bulletin, International Commission on Large Dams.

International Hydropower Association. (2019). Hydropower Sector Climate Resilience Guide. London, United
Kingdom.

IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special
report of the Intergovernmental Panel on Climate Change.

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change. (T. F. Stocker, D. Qin, G.-K. Plattner,
M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds.), Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral
Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. (C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M.
Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R.
Mastrandrea, and L. L. White, eds.), Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY,
USA.

iPresas. (2019). iPresas Calc. User guide. Version 1.0.2. Valencia.

Jones, R. N. (2000). “Managing Uncertainty in Climate Change Projections — Issues for Impact Assessment.”
Climatic Change, 45(3-4), 403-419.

Kaplan, S. (1997). “The Words of Risk Analysis.” Risk Analysis, 17(4), 407—417.

Kemeny, J. G., and Snell, J. L. (1962). “Preference rankings an axiomatic approach.” Mathematical Models in the
Social Sciences, Cambridge, 9-23.

Kendall, M. G. (1938). “A new measure of rank correlation.” Biometrika, 30(1-2), 81-93.

Kendall, M. G., and Gibbons, J. D. (1990). Rank correlation methods. E. Amold ; Oxford University Press,
London : New York, NY.

Khatri, K., and Vairavamoorthy, K. (2011). “A New Approach of Decision Making under Uncertainty for Selecting
a Robust Strategy: A Case of Water Pipes Failure.” Vulnerability, Uncertainty, and Risk, American Society of
Civil Engineers, Hyattsville, Maryland, United States, 953-962.

Kingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., and Arnell, N. W. (2009). “Uncertainty in the
estimation of potential evapotranspiration under climate change.” Geophysical Research Letters, 36(L20403).

Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P. J., Hewitson, B., and Mearns, L. (2010a). “Good
Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections.” Meeting Report of
the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model
Climate Projections, IPCC Working Group I Technical Support Unit, T. F. Stocker, D. Qin, G.-K. Plattner, M.
Tignor, and P. M. Midgley, eds., University of Bern, Bern, Switzerland.

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A. (2010b). “Challenges in Combining Projections
from Multiple Climate Models.” Journal of Climate, 23(10), 2739-2758.

Lempert, R. J., Groves, D. G., Popper, S. W., and Bankes, S. C. (2006). “A General, Analytic Method for
Generating Robust Strategies and Narrative Scenarios.” Management Science, 52(4), 514-528.

22-



Accounting for climate change uncertainty in long-term dam risk management

Lempert, R. J., Popper, S. W., and Bankes, S. C. (2003). Shaping the next one hundred years: new methods for
quantitative, long-term policy analysis. RAND Corporation, Santa Monica, CA.

Levitan, S., and Thomson, R. (2009). “The Application of Expected-Utility Theory to the Choice of Investment
Channels in a Defined-Contribution Retirement Fund.” ASTIN Bulletin, 39(2), 615-647.

Leyva Lopez, J. C., and Alvarez Carrillo, P. A. (2015). “Accentuating the rank positions in an agreement index
with reference to a consensus order.” International Transactions in Operational Research, 22(6), 969—995.

Lind, N. (2007). “Discounting risks in the far future.” Reliability Engineering & System Safety, 92(10), 1328—
1332.

Luo, K., Xu, Y., Zhang, B., and Zhang, H. (2018). “Creating an acceptable consensus ranking for group decision
making.” Journal of Combinatorial Optimization, 36(1), 307-328.

Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler, E.,
Mach, K. J., Matschoss, P. R., Plattner, G.-K., Yohe, G. W., and Zwiers, F. W. (2010). Guidance Note for Lead
Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Intergovernmental
Panel on Climate Change (IPCC).

Meila, M., Phadnis, K., Patterson, A., and Bilmes, J. A. (2012). “Consensus ranking under the exponential model.”
CoRR, abs/1206.5265.

Miao, D. Y., Li, Y. P., Huang, G. H., Yang, Z. F., and Li, C. H. (2014). “Optimization Model for Planning Regional
Water Resource Systems under Uncertainty.” Journal of Water Resources Planning and Management, 140(2),
238-249.

Minville, M., Brissette, F., and Leconte, R. (2010). “Impacts and Uncertainty of Climate Change on Water
Resource Management of the Peribonka River System (Canada).” Journal of Water Resources Planning and
Management, 136(3), 376-385.

Morales-Torres, A., Escuder-Bueno, 1., Serrano-Lombillo, A., and Castillo Rodriguez, J. T. (2019). “Dealing with
epistemic uncertainty in risk-informed decision making for dam safety management.” Reliability Engineering
& System Safety, 191, 106562.

Morales-Torres, A., Serrano-Lombillo, A., Escuder-Bueno, 1., and Altarejos-Garcia, L. (2016). “The suitability of
risk reduction indicators to inform dam safety management.” Structure and Infrastructure Engineering, 1-12.

National Research Council (U.S.) (Ed.). (2009). Informing decisions in a changing climate. National Academies
Press, Washington, DC.

von Neumann, J., and Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University
Press, Princeton, NJ, US.

Neumayer, E., and Barthel, F. (2011). “Normalizing economic loss from natural disasters: A global analysis.”
Global Environmental Change, 21(1), 13-24.

New, M., and Hulme, M. (2000). “Representing uncertainty in climate change scenarios: A Monte-Carlo
approach.” Integrated Assessment, 1(3), 203-213.

Noble, I. R., Hugq, S., Anokhin, Y. A., Carmin, J., Goudou, D., Lansigan, F. P., Osman-Elasha, B., and Villamizar,
A. (2014). “Adaptation needs and options.” Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D.
Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N.
Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White, eds., Cambridge, United Kingdom and New York,
NY, USA, 833-868.

Palmieri, A., Shah, F., and Dinar, A. (2001). “Economics of reservoir sedimentation and sustainable management
of dams.” Journal of Environmental Management, 61(2), 149—163.

Park, T., Kim, C., and Kim, H. (2014). “Valuation of Drainage Infrastructure Improvement Under Climate Change
Using Real Options.” Water Resources Management, 28(2), 445—457.

Pate-Cornell, E. (2002). “Risk and Uncertainty Analysis in Government Safety Decisions.” Risk Analysis, 22(3),
633-646.

Pittock, A. B., Jones, R. N., and Mitchell, C. D. (2001). “Probabilities will help us plan for climate change.”
Nature, 413(6853), 249-249.



Accounting for climate change uncertainty in long-term dam risk management

Plaia, A., Buscemi, S., and Sciandra, M. (2019). “A new position weight correlation coefficient for consensus
ranking process without ties.” Stat, 8(1).

Ramsey, F. P. (1926). “Truth and probability.” Foundations of Mathematics and other Logical Essays, R. B.
Braithwaite, ed., London: Kegan, Paul, Trench, Trubner & Co. Ltd. New York: Harcourt, Brace and Company,
156-198.

Roach, T., Kapelan, Z., Ledbetter, R., and Ledbetter, M. (2016). “Comparison of Robust Optimization and Info-
Gap Methods for Water Resource Management under Deep Uncertainty.” Journal of Water Resources
Planning and Management, 142(9), 04016028.

Savage, L. J. (1972). The foundations of statistics. Dover Publications, New York.

Schneider, S. H. (2003). “Imaginable surprise.” Handbook of weather, climate, and water: atmospheric chemistry,
hydrology, and societal impacts, T. D. Potter and B. R. Colman, eds., Wiley-Interscience, Hoboken, N.J.

Seneviratne, S. L., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, 1., Orlowsky, B., and Teuling, A. J.
(2010). “Investigating soil moisture—climate interactions in a changing climate: A review.” Earth-Science
Reviews, 99(3—4), 125-161.

Serrano-Lombillo, A., Escuder-Bueno, 1., and Altarejos-Garcia, L. (2012). “Use of risk models for evaluation of
risk reduction measures for dams.” Commission Internationale des Grands Barrages, Kyoto.

Serrano-Lombillo, A., Morales-Torres, A., Escuder-Bueno, 1., and Altarejos-Garcia, L. (2013). “Review, Analysis
and Application of Existing Risk Reduction Principles and Risk Indicators for Dam Safety Management.”
Italian Committee on Large Dams, Venice (Italy).

SPANCOLD. (2012). Risk Analysis Applied to Dam Safety. Technical Guide on Operation of Dams and
Reservoirs.

Spence, C. M., and Brown, C. M. (2018). “Decision Analytic Approach to Resolving Divergent Climate
Assumptions in Water Resources Planning.” Journal of Water Resources Planning and Management, 144(9),
04018054.

Street, R. B., and Nilsson, C. (2014). “Introduction to the Use of Uncertainties to Inform Adaptation Decisions.”
Adapting to an Uncertain Climate, T. Capela Lourenco, A. Rovisco, A. Groot, C. Nilsson, H.-M. Fiissel, L.
Van Bree, and R. B. Street, eds., Springer International Publishing, Cham, 1-16.

Swart, R. J., Raskin, P., and Robinson, J. (2004). “The problem of the future: sustainability science and scenario
analysis.” Global Environmental Change, 14(2), 137-146.

USACE. (2011). Safety of dams - Policy and procedures.

USACE. (2016). Guidance for Incorporating Climate Change Impacts to Inland Hydrology in Civil Works Studies,
Designs, and Projects.

USBR. (2011). Dam Safety Public Protection Guidelines. A Risk Framework to Support Dam Safety Decision-
Making. U.S. Bureau of Reclamation.

USBR. (2014). Climate Change Adaptation Strategy. U.S. Department of the Interior. Bureau of Reclamation.

USBR. (2016). Climate Change Adaptation Strategy: 2016 Progress Report. U.S. Department of the Interior.
Bureau of Reclamation.

Walker, W. E., Rahman, S. A., and Cave, J. (2001). “Adaptive policies, policy analysis, and policy-making.”
European Journal of Operational Research, 128(2), 282-289.

Walker, W., Haasnoot, M., and Kwakkel, J. (2013). “Adapt or Perish: A Review of Planning Approaches for
Adaptation under Deep Uncertainty.” Sustainability, 5(3), 955-979.

Walsh, J., Wuebbles, D., Hayhoe, K., Kossin, J., Kunkel, K., Stephens, G., Thorne, P., Vose, R., Wehner, M.,
Willis, J., Anderson, D., Doney, S., Feely, R., Hennon, P., Kharin, V., Knutson, T., Landerer, F., Lenton, T.,
Kennedy, J., and Somerville, R. (2014). “Ch. 2: Our Changing Climate.” Climate Change Impacts in the United
States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe,
Washington, DC, USA, 19-67.

Weigel, A. P., Knutti, R., Liniger, M. A., and Appenzeller, C. (2010). “Risks of Model Weighting in Multimodel
Climate Projections.” Journal of Climate, 23(15), 4175-4191.

Wilby, R. L., and Dessali, S. (2010). “Robust adaptation to climate change.” Weather, 65(7), 180—185.

24-



Accounting for climate change uncertainty in long-term dam risk management

Willows, R. 1., and Connell, R. K. (Eds.). (2003). Climate adaptation: risk, uncertainty and decision-making.
UKCIP Technical Report, UKCIP, Oxford.

Zhang, S. X., and Babovic, V. (2012). “A real options approach to the design and architecture of water supply
systems using innovative water technologies under uncertainty.” Journal of Hydroinformatics, 14(1), 13-29.

25-



	1 Introduction
	2 Climate change uncertainty in dam risk management
	3 A decision-making approach incorporating climate change uncertainty
	3.1 Risk estimation for current and future situations
	3.2 Risk evaluation
	3.3 Definition of potential risk reduction measures
	3.4 Evaluation of measure robustness
	3.4.1 Considerations
	3.4.2 Procedure
	3.4.3 Scenario weighting scheme

	3.5 Definition of prioritization strategy
	3.5.1 Average ranking
	3.5.2 Likelihood of rankings
	3.5.3 Index of ranking coincidence
	3.5.4 Consensus ranking

	3.6 Identification of sequence of implementation

	4 Case study
	4.1 Risk estimation
	4.2 Risk evaluation
	4.3 Definition of risk reduction measures
	4.4 Estimation of the efficiency in risk reduction for each measure
	4.5 Multi-model combination
	4.6 Prioritization strategy
	4.7 Identification of the implementation sequence

	5 Conclusions
	6 References

